A computational and statistical text analysis perspective for the Sentiment Analysis of the conversation in social media about gubernatorial election debates

Main Article Content

Diego Espitia
Julián Atilano
Martín Zumaya

Abstract

This study examines the influence of social media on the media image and public perception of candidates in the 2023 Mexican state election debates, using computational tools and statistical analysis to assess the sentiment of 40,866 tweets. They found that Delfina Gómez of the “Juntos hacemos historia” coalition was mentioned predominantly negatively. Nevertheless, her campaign effectively communicated her media image, with the term ‘maestra’ appearing prominently in discussions about her. Conversely, Alejandra del Moral of the Va por el Estado de México coalition did not achieve a similar media impact in the tweets analysed. This research highlights the importance of social media in modern electoral campaign strategies and shows how digital discourse shapes the image construction of candidates. The integration of quantitative and qualitative analysis allows not only the quantification of mentions, but also an understanding of the context and evolution of public perception. This approach offers an alternative methodology for analysing political and social events in the digital age.

Article Details


References

Banchs, R. E. (2013). Text Mining with MATLAB. Springer. https://doi.org/10.1007/978-1-4614-4151-9

Belcastro, L., Cantini, R., Marozzo, F., Talia, D., & Trunfio, P. (2020). Learning political polarization on social media using neural networks, IEEE access, 8, 47177-47187. https://doi.org/10.1109/ACCESS.2020.2978950

Brunschke, J., & Divine, L. (2017). Debunking Nixon’s radio victory in the 1960 election: Re-analyzing the historical record and considering currently unexamined polling data. The social science journal, 54(1), 67-75. https://doi.org/10.1016/j.soscij.2016.09.007

Bruns, A., & Burgess, J. (2011). #Ausvotes: how Twitter covered the 2010 Australian federal election. Communication, politics and culture, 44(2), 37-56.

Cambria, E., & White, B. (2014). Jumping NLP Curves: A Review of Natural Language Processing Research. IEEE Computational intelligence magazine, 9(2), 48-57. https://doi.org/10.1109/mci.2014.2307227

Caloca Lafont, E., & Ruiz Molina, F. (Coords.) (2023). Primer Informe: La Valiente y La Maestra. Discurso e imagen pública de las candidatas a gobernadora del Estado de México. Observatorio Electoral de Medios y Redes Socio-digitales 2023, PUEDJS, UNAM, México, 31 pp.

Chaudhry, H. N., Javed, Y., Kulsoom, F., Mehmood, Z., Khan, Z. I., Shoaib, U., & Janjua, S. H. (2021). Sentiment analysis of before and after elections: Twitter data of U.S. Election 2020. Electronics, 10(17), 2082. https://doi.org/10.3390/electronics10172082

Duncombe, C. (2019). The politics of Twitter: Emotions and the power of social media. International political sociology, 13(4), 409–429. https://doi.org/10.1093/ips/olz013

Hardesty, L. (2017). Explained: Neural networks ballyhooed artificial-intelligence technique known as “deep learning” revives 70-year-old idea. MIT News Office. https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414

Highfield, T., Harrington, S., & Bruns, A. (2013). Twitter as a technology for audiencieng and fandom. The #Eurovision phenomenon. Information, communication & society, 16(3), 315-339. https://doi.org/10.1080/1369118X.2012.756053

Himelboim, I., Sweetser, K. D., Tinkham, S. F., Cameron, K., Danelo, M., & West, K. (2014). Valence-based homophily on Twitter: Network analysis of emotions and political talk in the 2012 presidential election. New media & society, 18(7), 1382-1400. https://doi.org/10.1177/1461444814555096

Jänicke, S., Franzini, G., Cheema, M. F., & Scheuermann, G. (2015). On close and distant reading in digital humanities: A survey and future challenges. Eurographics conference on visualization (EuroVis).

Kalsnes, B., Krumsvik, A. H., & Storsul, T. (2014). Social media as a political backchannel. Journal of information management, 66 (3), 313–328. https://doi.org/10.1108/ajim-09-2013-0093

McKinney, M., & Warner, B. (2013). Do presidential debates matter? Examining a decade of campaign debate effects. Argumentation and advocacy, 49, 238-258. https://doi.org/10.1080/00028533.2013.11821800

Pietrusza, D. (2008). *1960 – LBJ vs. JFK vs. Nixon – The epic campaign that forged three presidencies. Union Square Press.

Steer, K. C. B., Wirth, A., & Halgamuge, S. K. (2009). The rationale behind seeking inspiration from Nature. In R. Chiong (Ed.). Adaptive and natural computing algorithms, 51-76. https://doi.org/10.1007/978-3-642-00267-0_2

The Commission on Presidential Debates (2020). CPD: 1960 Debates. https://www.debates.org/debate-history/1960-debates

Van Ryothoven, E. (2015). Learning to feel, learning to fear? Emotions, imaginaries, and limits in the politics of securitization. Security dialogue, 46(5), 458–75. https://doi.org/10.1177/0967010615574766

Villena-Román, J., & García Morera, J. (2013). TASS - Workshop on Sentiment Analysis at SEPLN. Daedalus, S.A.

Walczak, S., & Cerpa, N. (2003). Artificial neural networks. Encyclopedia of physical science and technology (Third Edition), 631-645. https://doi.org/10.1016/B0-12-227410-5/00837-1.

Yavari, A., Hassanpour, H., Rahimpour Cami, B., & Mahdavi, M. (2022). Election prediction based on Sentiment Analysis using Twitter data. International Journal of engineering, 35(2), 372-379. https://doi.org/10.5829/ije.2022.35.02b.13

Valdez, A. (2006). Hipótesis no comprobadas de la mercadotecnia política. Espiral, 13(37), 51-75.