Número 44 - 2013
Articles

El octágono medieval de Oposición para oraciones con predicados cuantificados

Juan Manuel Campos Benítez
Benemérita Universidad Autónoma de Puebla, México

Published 2013-09-30

How to Cite

Campos Benítez, J. M. (2013). El octágono medieval de Oposición para oraciones con predicados cuantificados. Tópicos, Revista De Filosofía, (44), 177–205. https://doi.org/10.21555/top.v0i44.8

Downloads

Download data is not yet available.

Altmetrics

Citas

Abstract

The traditional Square of Opposition consists of four sentence types. Two are universal and two particular; two are affirmative and two negative. Examples, where “S” and “P” designate the subject and the predicate, are: “every S is P”, “no S is P”, “some S is P” and “some S is not P”. Taking the usual sentences of the square of opposition, quantifying over their predicates exhibits non-standard sentence forms. These sentences may be combined into non-standard Squares of Opposition (an Octagon in this case), and they reveal a new relationship not found in the usual Square. Medieval logicians termed “disparatae” sentences like “every S is some P” and “some S is every P”, which are neither subaltern nor contrary, neither contradictory nor subcontrary. Walter Redmond has designed a special language L to express the logical form of these sentences in a precise way. I will use this language to show how Squares of Opposition, standard and non-standard, form a complex network of relations which bring to light the subtleties contained in this traditional doctrine.

References

  1. Buridan John, Summulae de Dialectica, disponible en la dirección electrónica http://individual.utoronto.ca/pking/resources/buridan/Summulae_de_dialectica.txt.
  2. Buridan John (2001), Summulae de Dialectica, traducción de Gyula Klima, New Haven: Yale University Press.
  3. Campos Benítez Juan (2007), “La conversión simple ordinaria y modal de las oraciones“, Revista de Filosofía, No. 57, 2007-3, Universidad del Zulia, Maracaibo.
  4. Hughes George H. (1989), “The Modal Logic of John Buridan”, in G. Corsi, C. Mangione and M. Mugnani (eds.), Atti del Convegno Internazionale di Storia della Logica, Le teorie delle modalita, Bologna, CLUEB.
  5. Mercado Tomás de (1986), Comentarios lucidísimos al texto de Pedro Hispano, trad. de Mauricio Beuchot, México, UNAM.
  6. Ockham, William of, Summa logicae, disponible en la dirección electrónica http://individual.utoronto.ca/pking/resources/ockham/Summa_logicae.txt.
  7. Read Stephen (2012), “John Buridan´s Theory of Consequence and His Octagons of Opposition“, en Jean-Yves Béziau y Dale Jacquette (eds.), Around and Beyond the Square of Opposition, Springer, Basel.
  8. Redmond Walter (1981), “Extensional Interpretation of General Sentences in 16th-Century Ibero-American Logic”, Crítica, UNAM, vol. xiii, no. 39.
  9. Redmond Walter (1992), “Relaciones y unidades complejas en la lógica mexicana del siglo xvi”, en M. Beuchot (ed.) Fray Alonso de la Veracruz; Antología y facetas de su obra, Morelia: Gobierno del Estado-Centro de Estudios sobre la Cultura Nicolaíta.
  10. Redmond Walter (2001), “Quantified Inference in 16thCentury Mexican Logic”, Vivarium, Los Paises Bajos, vol. xxxix, no. 1.
  11. Redmond Walter (2002), La lógica del Siglo de Oro. Una introducción histórica a la lógica, Pamplona, Universidad de Navarra.
  12. Sherwood William de (1995), Introductiones in Logicam edición bilingüe latín-aleman a cargo de Hartmut Brands y Cristoph Kann Hamburgo: Felix Meiner Verlag