Articles
Published 2019-12-13
How to Cite
Castro-Manzano, J. M. . (2019). Intermediate Syllogistic, Terms, and Trees. Tópicos, Revista De Filosofía, (58), 209–237. https://doi.org/10.21555/top.v0i58.1065
Downloads
Download data is not yet available.
Altmetrics
Citas
Abstract
In this paper we propose a tableaux method for the intermediate syllogistic of Peterson and Thompson by using the algebra of Sommers and Englebretsen. The result is an analytic tableaux method capable of modeling inference in basic, relational, and intermediate syllogistic.
References
- Castro-Manzano, J. M. (2018). A Tableaux Method for Term Logic. LANMR 2018, 2264, 1-14.
- Castro-Manzano, J. M. (2019). An Intermediate Term Functor Logic. Argumentos, Revista de Filosofía, 11(22), 17-31.
- Castro-Manzano, J. M., Lozano-Cobos, L. I. y Reyes-Cárdenas, P. O. (2018). Programming with Term Logic. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 9(3), 22-36.
- Castro-Manzano, J. M. y Pacheco-Montes, J. R. (2018). Moded Diagrams for Moded Syllogisms. En P. Chapman, G. Stapleton, A. Moktefi, S. Perez-Kriz y F. Bellucci (eds.), Diagrammatic Representation and Inference. Diagrams 2018. (pp. 757-760). Lecture Notes in Computer Science, vol. 10871. Cham: Springer.
- Carnap, R. (1930). Die alte und die neue Logik. Erkenntnis, 1, 12-26.
- D’Agostino, M., Gabbay, D. M., Hähnle, R. y Posegga, J. (1999). Handbook of Tableau Methods, Heidelberg: Springer.
- Englebretsen, G. (1987). The New Syllogistic. Nueva York-Berna: Peter Lang.
- Englebretsen, G. (1988). Preliminary Notes on a New Modal Syllogistic. Notre Dame Journal of Formal Logic, 29(3), 381-395.
- Englebretsen, G. (1991). Linear Diagrams for Syllogisms (with Relationals). Notre Dame Journal of Formal Logic, 33(1), 37-69.
- Englebretsen, G. (1996). Something to Reckon with: The Logic of Terms. Ottawa: University of Ottawa Press.
- Englebretsen, G. y Sayward, C. (2011). Philosophical Logic: An Introduction to Advanced Topics. Londres: Bloomsbury Academic.
- Geach, P. (1962). Reference and Generality: An Examination of Some Medieval and Modern Theories. Ithaca: Cornell University Press.
- Geach, P. (1980). Logic Matters. Oakland: University of California Press.
- Keil, F. (2005). Exploring Boundary Conditions on the Structure of Knowledge: Some Nonobvious Influences of Philosophy on Psychology. En David S. Oderberg (ed.), The Old New Logic: Essays on the Philosophy of Fred Sommers. (pp. 67-84). Londres: Bradford.
- Khemlani, S. y Johnson-Laird, P. N. (2012). Theories of the Syllogism: A Meta-Analysis. Psychological Bulletin, 427-457.
- Kuhn, S. (1983). An Axiomatization of Predicate Functor Logic. Notre Dame Journal of Formal Logic, 24(2), 233-241.
- Malink, M. (2006). A Reconstruction of Aristotle’s Modal Syllogistic. History and Philosophy of Logic, 27, 95-141.
- Moss, L. (2015). Natural Logic. En S. Lappin y C. Fox (eds.), The Handbook of Contemporary Semantic Theory. (pp. 559-592). Hoboken: John Wiley & Sons.
- Mozes, E. (1989). A Deductive Database Based on Aristotelian Logic. Journal of Symbolic Computation, 7(5), 487-507.
- Murphree, W. (1998). Numerical Term Logic. Notre Dame Journal of Formal Logic, 39(3), 346-362.
- Noah, A. (1980). Predicate-functors and the Limits of Decidability in Logic. Notre Dame Journal of Formal Logic, 21(4), 701-707.
- Noah, A. (2005). Sommers’s Cancellation Technique and the Method of Resolution. En David S. Oderberg (ed.), The Old New Logic: Essays on the Philosophy of Fred Sommers. (pp. 169- 182). Londres: Bradford.
- Peterson, P. L. (1979). On the Logic of “few”, “many”, and “most”. Notre Dame Journal of Formal Logic, 20, 155-179.
- Priest, G. (2008). An Introduction to Non-Classical Logic: From If to Is. Cambridge: Cambridge University Press.
- Quine, W. V. O. (1971). Predicate Functor Logic. En J. E. Fenstad (ed.), Proceedings of the Second Scandinavian Logic Symposium. (pp. 309-316). Ámsterdam: North-Holland.
- Rini, A. A. (1998). Is There a Modal Syllogistic? Notre Dame Journal of Formal Logic, 39(4), 554-572.
- Russell, B. (1937). A Critical Exposition of the Philosophy of Leibniz: With an Appendix of Leading Passages. Londres: G. Allen & Unwin.
- Sommers, F. (1967). On a Fregean Dogma. En I. Lakatos (ed.), Problems in the Philosophy of Mathematics. (pp. 47- 81). Studies in Logic and the Foundations of Mathematics, vol. 47. Ámsterdam: Elsevier.
- Sommers, F. (1982). The Logic of Natural Language. Oxford: Oxford University Press.
- Sommers, F. (2005). Intellectual Autobiography. En David S. Oderberg (ed.), The Old New Logic: Essays on the Philosophy of Fred Sommers. (pp. 1-24). Londres: Bradford.
- Sommers, F. y Englebretsen, G. (2000). An Invitation to Formal Reasoning: The Logic of Terms. Farnham: Ashgate.
- Staal, J. F. (1969). Formal Logic and Natural Languages (a Symposium). Foundations of Language, 5(2), 256-284.
- Thom, P. (1996). The Logic of Essentialism. An Interpretation of Aristotle’s Modal Syllogistic. Dordrecht: Kluwer.
- Thompson, B. (1982). Syllogisms using “few”, “many”, and “most”. Notre Dame Journal of Formal Logic, 23(1), 75-84.
- Thompson, B. (1986). Syllogisms with Statistical Quantifiers. Notre Dame Journal of Formal Logic, 27(1), 93-103.
- Veatch, H. B. (1970). Intentional Logic: A Logic Based on Philosophical Realism. Hamden: Archon Books.