Núm. 58 (2020): Enero - junio
Artículos

Sobre la ontología de la química cuántica

Juan Camilo Martínez González
Universidad de Buenos aires Consejo nacional de investigaciones científicas y técnicas (CONICET)

Publicado 2019-12-13

Cómo citar

Martínez González, J. C. (2019). Sobre la ontología de la química cuántica. Tópicos, Revista De Filosofía, (58), 325–346. https://doi.org/10.21555/top.v0i58.1045

Descargas

Los datos de descargas todavía no están disponibles.

Altmetrics

Citas

Resumen

Química cuántica es la rama de la química que se ocupa principalmente de la aplicación de la mecánica cuántica a los sistemas químicos a un nivel molecular. Gracias a su peculiar posición entre la química y la física, ha comenzado a ser una disciplina de interés para los filósofos de la química. Sin embargo, en el ámbito filosófico, la química cuántica se ha estudiado principalmente, desde una perspectiva histórica o desde cuestiones metodológicas. En contraste, la pregunta que guía este artículo es: ¿qué clase de entidades son estudiadas por la química cuántica? Para desarrollar mi argumento, discutiré, en primer lugar, la importancia de las preguntas ontológicas. Después, consideraré en qué medida la aproximación Born-Oppenheimer y el concepto de electrón de la química cuántica se ajustan al contexto teórico cuántico. Finalmente, discutiré algunas cuestiones acerca de a qué se refiere la química cuántica.

Citas

  1. Accorinti, H. & Martínez González, J. C. (2016). Acerca de la independencia de los modelos respecto de las teorías. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia, 31, 225-245.
  2. Bader, R. (1990). Atoms in Molecules. A Quantum Theory. Oxford: Oxford University Press.
  3. Berkovitz, J. (2016). Action at a Distance in Quantum Mechanics. In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. [URL: http://plato.stanford.edu/archives/spr2016/entries/qm-action-distance/].
  4. Bohm, D. (1952a). A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables. I. Physical Review, 85, 166-179.
  5. Bohm, D. (1952b). A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables. II. Physical Review, 85, 180-193.
  6. Born, M. & Oppenheimer, J. R. (1927). On the Quantum Theory of Molecules. Annalen der Physik, 84, 457-484.
  7. Bruer, J. T. (1982). The Classical Limit of Quantum Theory. Synthese, 50,167-212.
  8. Cartwright, N., Shomar, T. & Suárez, M. (1995). The Tool Box of Science. En W. Herfel, W. Krajewski, I. Niniiluoto & R. Wójcicki (eds.), Theories and Models in Scientific Processes. (pp. 137-149). Amsterdam: Rodopi.
  9. Chang, H. (2015). Reductionism and the Relation Between Chemistry and Physics. In T. Arabatzis, J. Renn & A. Simões (eds.), Relocating the History of Science: Essays in Honor of Kostas Gavroglu. (pp. 193-209). Dordrecht: Springer.
  10. Chang, R. & Goldsby, K. (2011). Chemistry. New York: McGraw-Hill.
  11. da Costa, N. & French, S. (2003). Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning. Oxford: Oxford University Press.
  12. da Costa, N. & Lombardi, O. (2014). Quantum Mechanics: Ontology Without Individuals. Foundation of Physics, 44, 1246-1257.
  13. Diestler, D. (2013). Beyond the Born–Oppenheimer Approximation: A Treatment of Electronic Flux Density in Electronically Adiabatic Molecular Processes. Journal of Physical Chemistry A, 117, 4698-4708.
  14. Einstein, A. (1948). Quantenmechanik und Wirklichkeit. Dialectica, 2, 320-324.
  15. Esfeld, M. (2001). Holism in Philosophy of Mind and Philosophy of Physics. Dordrecht: Kluwer Academic Publishers.
  16. Fortin, S. & Lombardi, O. (2014). Partial Traces in Decoherence and in Interpretation: What Do Reduced States Refer to? Foundations of Physics, 44, 426-446.
  17. French, S. (1998). On the Withering Away of Physical Objects. In E. Castellani (ed.), Interpreting Bodies. Classical and Quantum Objects in Modern Physics. (pp. 93-113). Princeton: Princeton University Press.
  18. French, S. & Krause, D. (2006). Identity in Physics: A Historical, Philosophical and Formal Analysis. Oxford: Oxford University Press.
  19. Gavroglu, K. & Simões, A. (2012). Neither Physics nor Chemistry. A History of Quantum Chemistry. Cambridge MA & London: The MIT Press.
  20. Gavroglu, K. & Simões, A. (2015). Philosophical Issues in (Sub)Disciplinary Contexts: The Case of Quantum Chemistry. En E. Scerri & G. Fisher (eds.), Essays in the Philosophy of Chemistry. (pp. 60-79). Oxford: Oxford University Press.
  21. Harré, R. (2009). Trope Theory and the Ontology of Chemistry. Foundations of Chemistry, 11, 93-103.
  22. Healey, R. (2016). Holism and Nonseparability in Physics. In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. [ URL = http:// plato.stanford.edu/archives/spr2016/entries/physics-holism/].
  23. Heisenberg, W. (1930). The Physical Principles of the Quantum Theory. Chicago: University of Chicago Press.
  24. Hendry, R. F. (1998). Models and Approximations in Quantum Chemistry. In N. Shanks (ed.), Idealization in Contemporary Physics. (pp. 123-142). Amsterdam-Atlanta: Rodopi.
  25. Hendry, R. F. (2004). The Physicists, the Chemists, and the Pragmatics of Explanation. Philosophy of Science, 71, 1048-1059.
  26. Hendry, R. F. (2008). Two Conceptions of the Chemical Bond. Philosophy of Science, 75, 909-920.
  27. Hendry, R. F. (2010). Ontological Reduction and Molecular Structure. Studies in History and Philosophy of Modern Physics, 41, 183-191.
  28. Hettema, H. (2009). Explanation and Theory Formation in Quantum Chemistry. Foundations of Chemistry, 11, 145-174.
  29. Hettema, H. (2012). Reducing Chemistry to Physics. Limits, Models, Consecuences. Ph.D. dissertation. University of Groningen: Createspace Publishing Platform.
  30. Howard, D. (1989). Holism, Separability and the Metaphysical Implications of the Bell Experiments. En J. Cushing & E. McMullin (eds.), Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem. (pp. 224-253). Notre Dame: University of Notre Dame Press.
  31. Kochen, S. & Specker, E. (1967). The Problem of Hidden Variables in Quantum Mechanics. Journal of Mathematics and Mechanics, 17, 59-87.
  32. Labarca, M. & Lombardi, O. (2010). Why Orbitals Do Not Exist? Foundations of Chemistry, 12, 149-157.
  33. Lange, M. (2002). An Introduction to the Philosophy of Physics. Oxford: Blackwell Publishing.
  34. Le Bihan, S. (2012). Defending the Semantic View: What it takes. European Journal for Philosophy of Science, 2, 249-274.
  35. Lewowicz, L. & Lombardi, O. (2013). Stuff versus Individuals. Foundations of Chemistry, 15, 65-77.
  36. Lombardi, O. (2014). The Ontological Autonomy of the Chemical World: Facing the Criticisms. In E. Scerri & L. McIntyre (eds.), Philosophy of Chemistry: Growth of a New Discipline (Boston Studies in the Philosophy and History of Science). (pp. 23-38). Dordrecht: Springer.
  37. Lombardi, O. & Castagnino, M. (2008). A Modal-Hamiltonian Interpretation of Quantum Mechanics. Studies in History and Philosophy of Modern Physics, 39, 380-443.
  38. Lombardi, O. & Castagnino, M. (2010). Matters Are Not So Clear on the Physical Side. Foundations of Chemistry, 12, 159-166.
  39. Lombardi, O. and Dieks, D. (2016). Particles in a Quantum Ontology of Properties. In T. Bigaj and C. Wüthrich (eds.), Metaphysics in Contemporary Physics (Poznan Studies in the Philosophy of the Sciences and the Humanities). (pp. 123-143). Leiden: Brill-Rodopi.
  40. Lombardi, O. & Labarca, M. (2005). The Ontological Autonomy of the Chemical World. Foundations of Chemistry, 7, 125-148.
  41. Lombardi, O. & Labarca, M. (2006). The Ontological Autonomy of the Chemical World: A Response to Needham. Foundations of Chemistry, 8, 81-92.
  42. Lombardi, O. & Martínez González, J. C. (2012), Entre mecánica cuántica y estructuras químicas: ¿a qué refiere la química cuántica? Scientiae Studia, 10, 649-670.
  43. Matta, C. F. (2013). Special Issue: Philosophical Aspects and Implications of the Quantum Theory of Atoms in Molecules (QTAIM). Foundations of Chemistry, 15, 245-251.
  44. Matta, C. F., Massa, L., & Keith, T. A. (2011). Richard F. W. Bader: A True Pioneer. Journal of Physical Chemistry A, 115, 12427-12431.
  45. Maudlin, T. (1994). Quantum Nonlocality and Relativity. Oxford: Blackwell.
  46. Post, H. (1963). Individuality and Physics. Listener, 70, 534-537.
  47. Redhead, M. & Teller, P. (1992). Particle Labels and the Theory of Indistinguishable Particles in Quantum Mechanics. British Journal for the Philosophy of Science, 43, 201-218.
  48. Rohrlich, F. (1989). The Logic of Reduction: The Case of Gravitation. Foundations of Physics, 19, 1151-1170.
  49. Scerri, E. (2004). Just How Ab Initio Is Ab Initio Quantum Chemistry? Foundations of Chemistry, 6, 93-116.
  50. Schrödinger, E. (1935). Discussion of Probability Relations between Separated Systems. Proceedings of the Cambridge Philosophical Society, 31, 555-563.
  51. Schummer, J. (2008). Matter versus Form, and Beyond. In K. Ruthenberg & J. van Brakel (eds.), Stuff. The Nature of Chemical Substances. (pp. 3-18). Würzburg: Königshauen & Neumann.
  52. Simões, A. & Gavroglu, K. (2001). Issues in the History of Theoretical and Quantum Chemistry, 1927-1960. In C. Reinhardt (ed.), Chemical Sciences in the 20th Century. Bridging Boundaries. (pp. 51-74). New York: Wiley-VCH.
  53. Suárez, M. (1999). The Role of Models in the Application of Scientific Theories: Epistemological Implications. In M. Morgan & M. Morrison (eds.), Models as Mediators. (pp. 168-196). Cambridge: Cambridge University Press.
  54. Suárez, M. (2009). Fictions in Science: Philosophical Essays on Modeling and Idealization. New York: Routledge.
  55. Suárez, M. & Cartwright, N. (2008). Theories: Tools versus Models. Studies in History and Philosophy of Modern Physics, 39, 62-81.
  56. Teller, P. (1998). Quantum Mechanics and Haecceities. In E. Castellani (ed.), Interpreting Bodies. Classical and Quantum Objects in Modern Physics. (pp. 114-141). Princeton: Princeton University Press.
  57. Tumulka, R. (2004). Understanding Bohmian Mechanics: A Dialogue. American Journal of Physics, 9, 1220-1226.
  58. van Brakel, J. (2011). Substances: The Ontology of Chemistry. In R. Hendry, P. Needham & A. Woody (eds.), Philosophy of Chemistry. (pp. 191-229). Amsterdam: North-Holland.
  59. van Fraassen, B. (1989). Laws and Symmetry. Oxford: Oxford University Press.