Young content creators around self-harm: identifying metalanguages on X (Twitter)

Main Article Content

Esther Martínez-Pastor
Catalina Gaete-Salgado

Abstract

Given the increase in non-suicidal self-harm among minors, this research focuses on the content generated by young people on the social network X (formerly Twitter). They are part of a digital community and create verbal and non-verbal linguistic codes around self-harm. To identify them, the following objectives were set: 1) to identify the languages prevalent in tweets linked to self-harm, 2) to find out the hashtags and specific words linked to self-harm in tweets and 3) to understand the meaning of the emoticons they use and share in tweets. To do this, quantitative and qualitative research was carried out. Through an API that collected a total of 187,906 tweets on Twitter, from 66,732 different users, between November 2022 and June 2023 about self-harm. From this total, a qualitative analysis was carried out on 1000 tweets that had the highest number of likes per week. Among the main results obtained, it is highlighted that the most spoken languages in the world after Mandarin Chinese are used: English and Spanish. Likewise, young people have generated a slang of hashtags and specific words linked to self-harm on the networks so as not to be identified by the networks; and they show their emotions through emoticons.

Article Details


References

Alhassan, M. A., Inuwa-Dutse, I., Bello, B. S., & Pennington, D. (2021, July). Self-harm: detection and support on Twitter. In ECSM 2021 8th European Conference on social media (255 pp.). Academic Conferences International.

American Psychiatric Association (DSM-5-TR) (2022). Diagnostic and statistical Manual of mental disorders. Fifth Edition. Washington, DC: American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425787

Barrocas, A. L., Hankin, B. L., Young, J. F., & Abela, J. R. (2012). Rates of nonsuicidal self-injury in youth: age, sex, and behavioral methods in a community sample. Pediatrics, 130(1), 39-45. https://doi.org/10.1542/peds.2011-2094

Berg, B. (2004). Qualitative research methods for the social sciences 5. Teaching sociology. 18. https://doi.org/10.2307/1317652

Brown R.C. & Plener P.L. (2018) Non-suicidal Self-Injury in Adolescence. Curr Psychiatry Rep. 19(3), 20. https://doi.org/10.1007/s11920-017-0767-9

Brown, R. C., Fischer, T., Goldwich, A. D., Keller, F., Young, R., & Plener, P. L. (2018). # cutting: Non-suicidal self-injury (NSSI) on Instagram. Psychological medicine, 48(2), 337-346. https://doi.org/10.1017/S0033291717001751

Bruns, A., & Burgess, J. (2011). The use of Twitter hashtags in the formation of ad hoc publics. In Proceedings of the 6th European consortium for political research (ECPR) general conference 2011 (pp. 1-9). The European Consortium for Political Research (ECPR).

Calvete, E., Orue, I., Aizpuru, L., & Brotherton, H. (2015). Prevalencia y funciones de autolesiones no suicidas en adolescentes españoles. Psicothema, 27(3), 223-228.

Cantón, M. C. (2020). El lenguaje no verbal en las redes sociales. Sabir. International Bulletin of Applied Linguistics, 1, 5-32. https://doi.org/10.25115/ibal.v1i2.3485

Cipriano, A., Cella, S., & Cotrufo, P. (2017). Nonsuicidal self-injury: A systematic review. Frontiers in psychology, 8, 1946. https://doi.org/10.3389/fpsyg.2017.01946

Coppersmith, G., Ngo, K., Leary, R., & Wood, A. (2016, June). Exploratory analysis of social media prior to a suicide attempt. In Proceedings of the third workshop on computational linguistics and clinical psychology (pp. 106-117). https://doi.org/10.18653/v1/W16-0311

Critikián, D. M., & Núñez, M. M. (2021). Redes sociales y la adicción al like de la generación z. Revista de comunicación y salud, 11, 55-76. https://doi.org/10.35669/rcys.2021.11.e281

Cunha, E., Magno, G., Comarela, G., Almeida, V., Gonçalves, M. A., & Benevenuto, F. (2011, June). Analyzing the dynamic evolution of hashtags on twitter: a language-based approach. In Proceedings of the workshop on language in social media (LSM 2011) (pp. 58-65).

Eckert, P. (2006). Communities of practice. Concise encyclopedia of pragmatics, 2nd edition. Oxford: Elsevier (pp. 109-112).

Fundación ANAR (2021). Informe Anual. https://www.anar.org/anar-trato-en-2021-a-4-542-menores-de-edad-por-ideacion-suicida-autolesiones-o-intento-de-suicidio/

Gómez-Adorno, H., Markov, I., Sidorov, G., Posadas-Durán, J. P., & Arias, C. F. (2016). Compilación de un lexicón de redes sociales para la identificación de perfiles de autor. Research in computing science, 115, 19-27. https://doi.org/10.13053/rcs-115-1-2

Guccini, F., & McKinley, G. (2022). “How deep do I have to cut?“: Non-suicidal self-injury and imagined communities of practice on Tumblr. Social science & medicine, 296, 114760. https://doi.org/10.1016/j.socscimed.2022.114760

Hilton, C. Emma (2017). Unveiling self-harm behaviour: what can social media site Twitter tell us about self-harm? A qualitative exploration. Journal of clinical nursing, 26(11-12), 1690-1704. https://doi.org/10.1111/jocn.13575

Khasawneh, A. et al. (2021). An investigation of the portrayal of social media challenges on YouTube and Twitter. ACM Transactions on social computing, 4(1), 1-23. https://doi.org/10.1145/3444961

Kirmayer, L. J., Raikhel, E., & Rahimi, S. (2013). Cultures of the Internet: Identity, community and mental health. Transcultural psychiatry, 50(2), 165-191. https://doi.org/10.1177/1363461513490626

Klonsky, E. D. (2011). Non-suicidal self-injury in United States adults: prevalence, sociodemographics, topography and functions. Psychological medicine, 41(9), 1981-1986. https://doi.org/10.1017/S0033291710002497

Kralj Novak, P., Smailović, J., Sluban, B., & Mozetič, I. (2015). Sentiment of emojis. PloS one, 10(12), e0144296. https://doi.org/10.1371/journal.pone.0144296

Krippendorff, K. (2004). Measuring the reliability of qualitative text analysis data. Quality and quantity, 38, 787-800. https://doi.org/10.1007/s11135-004-8107-7

Lachmar, E. M., Wittenborn, A. K., Bogen, K. W., & McCauley, H. L. (2017). #MyDepressionLooksLike: Examining public discourse about depression on Twitter. JMIR mental health, 4(4), e8141. https://doi.org/10.2196/mental.8141

Lavis, A., & Winter, R. (2020). # Online harms or benefits? An ethnographic analysis of the positives and negatives of peer-support around self-harm on social media. Journal of child psychology and psychiatry, 61(8), 842-854.

Lerman, K. (2023). Radicalized by Thinness: Using a Model of Radicalization to Understand Pro-Anorexia Communities on Twitter. arXiv preprint arXiv:2305.11316.

Lookingbill, V. (2022). Examining nonsuicidal self-injury content creation on TikTok through qualitative content analysis. Library & information science research, 44(4), 101199. https://doi.org/10.1016/j.lisr.2022.101199

Martínez-Pastor, E., Atauri-Mezquida, D., Nicolás-Ojeda, M. Á., & Blanco-Ruiz, M. (2023). Visualización e interpretación de las interacciones en los mensajes de autolesiones no suicidas (ANS) en Twitter. Redes. Revista hispana para el análisis de redes sociales, 34(2), 238-253. https://doi.org/10.5565/rev/redes.996

Moreno, M. A., Ton, A., Selkie, E., & Evans, Y. (2016). Secret society 123: Understanding the language of self-harm on Instagram. Journal of adolescent health, 58(1), 78-84. https://doi.org/10.1016/j.jadohealth.2015.09.015

Moss, C., Wibberley, C., & Witham, G. (2023). Assessing the impact of Instagram use and deliberate self-harm in adolescents: A scoping review. International journal of mental health nursing, 32(1), 14-29. https://doi.org/10.1111/inm.13055

Muehlenkamp, J. J., Claes, L., Havertape, L., & Plener, P. L. (2012). International prevalence of adolescent non-suicidal self-injury and deliberate self-harm. Child and adolescent psychiatry and mental health, 6(1), 1-9. https://doi.org/10.1186/1753-2000-6-10

Muehlenkamp, J. J., Xhunga, N., & Brausch, A. M. (2018). Self-injury age of onset: A risk factor for NSSI severity and suicidal behavior. Archives of suicide research. https://doi.org/10.1080/13811118.2018.1486252

Muehlenkamp, J. J., & Gutierrez, P. M. (2004). An investigation of differences between self-injurious behavior and suicide attempts in a sample of adolescents. Suicide and Life-Threatening Behavior, 34(1), 12-23. https://doi.org/10.1521/suli.34.1.12.27769

Network Contagion Research Institute (2022). Online communities of adolescents and young adults celebrating, glorifying, and encouraging self-harm and suicide are growing rapidly on Twitter. https://networkcontagion.us/reports/8-29-22-online-communities-of-adolescents-and-young-adults-celebrating-glorifying-and-encouraging-self-harm-and-suicide-are-growing-rapidly-on-twitter/

Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks: Sage.

Pavalanathan, U., & Eisenstein, J. (2015). Emoticons vs. emojis on Twitter: A causal inference approach. arXiv preprint arXiv:1510.08480.

Pérez-Elizondo, A. D. (2020). Enfermedad por autolesión. ¡Primero me corto, luego existo! Archivos de investigación materno infantil, 11(2), 77-81. https://doi.org/10.35366/101554

Quintanilla, I. (2002). Psicología del consumidor. Madrid: Prentice Hall.

Sanmartín, A., Ballesteros, J. C., Calderón, D., & Kuric, S. (2022). Barómetro juvenil 2021. Salud y bienestar: Informe sintético de resultados. Madrid: Centro Reina Sofía sobre Adolescencia y Juventud, Fundación FAD Juventud. https://doi.org/10.5281/zenodo.6340841

Scherr, S., Arendt, F., Frissen, T., & Oramas M, J. (2020). Detecting intentional self-harm on Instagram: Development, testing, and validation of an automatic image-recognition algorithm to discover cutting-related posts. Social science computer review, 38(6), 673–685. https://doi.org/10.1177/0894439319836389

Shanahan, N., Brennan, C., & House, A. (2019). Self-harm and social media: thematic analysis of images posted on three social media sites. BMJ open, 9(2), e027006. https://doi.org/10.1136/bmjopen-2018-027006

Swannell, S. V., Martin, G. E., Page, A., Hasking, P., & St John, N. J. (2014). Prevalence of nonsuicidal selr-injury in nonclinical samples: Systematic review, meta-analysis and meta-regression. Suicide and life-threatening behavior, 44(3), 273-303. https://doi.org/10.1111/sltb.12070

UNICEF (2021a). Por lo menos 1 de cada 7 niños y jóvenes ha vivido confinado en el hogar durante gran parte del año, lo que supone un riesgo para su salud mental y su bienestar, según UNICEF.

UNICEF (2021b). Estado Mundial de la infancia 2021.