N.º 52 (2017): Enero - junio
Artículos

Re(dis)covering Leibniz's Diagrammatic Logic

J. Martín Castro Manzano
UPAEP

Publicado 2016-12-27

Como Citar

Manzano, J. M. C. (2016). Re(dis)covering Leibniz’s Diagrammatic Logic. Tópicos, Revista De Filosofía, (52), 89–116. https://doi.org/10.21555/top.v0i52.760

Downloads

Não há dados estatísticos.

Altmetrics

Citas

Resumo

In this paper we recover Leibniz's diagrammatic logic for syllogistic and we discover its computational and logical features by providing a formal approach to it in metalogical terms, which is something that, as far as we know, is yet to be accomplished. Thus, in this contribution we pursue, respectively, two goals, a historical and a logical one: i) to bring more attention on the algorithmic aspects of Leibniz's diagrammatic system for syllogistic, which be believe have been neglected because of a general bias against diagram-based reasoning;
and ii) to prove metalogical properties of the system in order to argue that such system is a bona fide logical system.

Referências

  1. Allwein, G., Barwise, J., & Etchemendy, J. (1996). Logical reasoning with diagrams. New York: Oxford University Press.
  2. Bellucci, F., Mokte , A. & Pietarinen A. (2013). Diagrammatic Autarchy: Linear diagrams in the 17th and 18th centuries. In Proceedings of the First International Workshop on Diagrams, Logic and Cognition. Kolkata: India. October 28-29.
  3. Boissonnade, A., Lagrange, J.L. & Vagliente, V.N. (2013). Analytical Mechanics. Springer.
  4. Bök, A.F. (1766). Sammlung der Schriften, welche den logischen Calcul Herrn Ploucquets betre en. Frankfurt.
  5. Boole, G. (1951). The Mathematical Analysis of Logic, Being an Essay Towards a Calculus of Deductive Reasoning. Basil Blackwell: Oxford.
  6. Carnap, R., & Smeaton, A. (1937). The logical syntax of language. London: K. Paul, Trench, Trubner & Co.
  7. Carroll, L. (1887). The game of logic. (2nd ed.) London: Macmillan and Co.
  8. Descartes, R., Miller, V.R., & Miller, R.P. (1984). Principles of Philosophy. Springer.
  9. Dieudonné, J. (2008). Foundations of Modern Analysis. Read Books.
  10. Karnaugh, M. (1953). The Map Method for Synthesis of Combinational Logic Circuits. Transactions of the American Institute of Electrical Engineers part I, 72 (9), 593–599.
  11. Kneale, W.C. & Kneale, M. (1962). The Development of Logic. Clarendon Press: Oxford.
  12. Lambert, J.H. (1764). Neues Organon. Leipzig.
  13. Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100.
  14. Leibniz, G. (1966). Nouveaux essais sur l’entendement humain. Paris: Garnier-Flammarion.
  15. Leibniz, G., & Couturat, L. (1903). Opuscules et fragments inédits de Leibniz: Extraits des ms. de la Bibliotque royale de Hanovre. Paris: Alcan.
  16. Lenzen, W. (1990). Das System der Leibnizschen Logik.
  17. De Gruyter: Berlin. Lenzen, W. (2004). Leibniz logic. In D. Gabbay & J. Woods (eds.) Handbook of the history of logic: The rise of modern logic: From Leibniz to Frege (Vol. 3). Elsevier: Amsterdam.
  18. Llull, R. (1501). Ars magna. Barch[ino]ne: Impressum per Petru[m]
  19. Posa. Nakatsu, R. (2009). Reasoning with Diagrams Decision-Making and Problem- Solving with Diagrams. Hoboken: John Wiley & Sons.
  20. Nelsen, R. (1993). Proofs Without Words: Exercises in Visual Thinking. Mathematical Association of America.
  21. Newton, I. (1979). Mathematical principles of natural philosophy. A. Motte. (Trans.) University of California Press.
  22. Murner, T. (1967). Logica memorativa Chartiludium logice, sive totius dialectice memoria, Strasburg, 1509. (Facsimile. ed.). Nieuwkoop: Miland.
  23. Pagnan, R. (2012). A Diagrammatic Calculus of Syllogisms. Journal of Logic, Language and Information, 21, 3, 347-364.
  24. Polster, B. (2004). Q.E.D.: Beauty in Mathematical Proof. Wooden Books: New York.
  25. Tarski, A. (1956a). On the concept of logical consequence. In Logic, semantics, metamathematics; papers from 1923 to 1938. Oxford: Clarendon Press.
  26. Tarski, A. (1956b). On some fundamental concepts of metamathematics. In Logic, semantics, metamathematics; papers from 1923 to 1938. Oxford: Clarendon Press.
  27. Tennant, N. (1986). The withering away of formal semantics. Mind & Language, 1(4), 302–318.
  28. Shimojima, A. (1996). Operational constraints in diagrammatic reasoning. In G. Allwein, J. Barwise, & J. Etchemendy (eds.) Logical reasoning with diagrams. New York: Oxford University Press.
  29. Shin, S. (1994). The Logical Status of Diagrams. Cambridge University Press: Cambridge.
  30. Stevin, S. (1586). De beghinselen der weegh const. Leyden.
  31. Velarde Lombraña, J. (2002). Leibniz y la lógica. Thémata: Revista de Filosofía, 29, 217–231.
  32. Venn, J. (1880). On the Diagrammatic and Mechanical Representation of Propositions and Reasonings. London, Edinburgh, and Dublin philosophical magazine and journal of science. R. Taylor.