Núm. 50 (2016): Enero - junio
Artículos

Evidencia y neurociencias cognitivas: El caso de la resonancia magnética funcional

A. Nicolás Venturelli
UNC / CONICET
M. Itatí Branca
UNC / CONICET

Publicado 2015-12-20

Cómo citar

Venturelli, A. N., & Branca, M. I. (2015). Evidencia y neurociencias cognitivas: El caso de la resonancia magnética funcional. Tópicos, Revista De Filosofía, (50), 177–207. https://doi.org/10.21555/top.v0i50.721

Descargas

Los datos de descargas todavía no están disponibles.

Altmetrics

Citas

Resumen

La resonancia magnética funcional es una de las técnicas de neuroimagen más difundidas en las neurociencias cognitivas. Su influencia tuvo un rol central en la configuración del aspecto experimental de este campo. Frente a esto, consideramos que su estatus como evidencia no ha sido suficientemente discutido en la literatura filosófica. En este trabajo nos centramos sobre este punto abordando el problema clásico de definir el alcance que puede tener la estrategia localizacionista en neurociencias. Atendemos al modo en que este problema se manifiesta hoy, tomando algunos ejemplos recientes de abordajes neurocientíficos caracterizados por estudiar el carácter dinámico de la actividad a gran escala en el cerebro. Tomamos en cuenta un número de limitaciones que presenta la resonancia magnética funcional, distinguiendo aquellas cuyo tratamiento pone en juego problemáticas de una índole no meramente técnica. A partir del análisis de algunas maneras en que los investigadores les hacen frente, sostenemos que existe una medida importante en que este tipo de estudios de neuroimagen pueden ser orientados sobre la base de supuestos y consideraciones teóricas generales. Concluimos que esta particular permeabilidad teórica de la resonancia magnética funcional es un factor central que incide sobre su estatus como evidencia neurocientífica.

 

Citas

  1. Abrahamsen, A., & Bechtel, W. (2012). From Reactive to Endogenously Active Dynamical Conceptions of the Brain. In Philosophy of Behavioral Biology. K. S. Plaisance & T. A. C. Reydon (Eds.) (pp. 329–366). Springer Netherlands. Retrieved from http://link.springer.com/chapter/10.1007/978-94-007-1951-4_16
  2. Aguirre, G. K. (2010). Experimental Design Analysis. BOLD fMRI: A Guide to Functional Imaging for Neuroscientists, 55.
  3. Armony, J. L., Trejo-Martínez, D., & Hernández, D. (2012). Resonancia Magnética Funcional (RMf): Principios y Aplicaciones en Neuropsicología y Neurociencias Cognitivas. Neuropsicologia Latinoamericana, 4(2). Retrieved from http://www.neuropsicolatina.org/index.php/Neuropsicologia_Latinoamericana/article/view/103
  4. Bandettini, P. (2006). Functional magnetic resonance imaging. In Methods in Mind. C. Senior, T. Russell, & M. Gazzaniga (Eds.)(pp. 193-235). Cambridge, Mass.; London: The MIT Press.
  5. Beer, R. D. (2000). Dynamical Approaches to Cognitive Science. Trends in Cognitive Sciences, 4(3), 91–99.
  6. Bogen, J. (2002). Epistemological Custard Pies From Functional Brain Imaging. Philosophy of Science, 69(3), 59–71.
  7. Bressler, S. L., & Kelso, J. a. S. (2001). Cortical coordination dynamics and cognition. Trends in Cognitive Sciences, 5(1), 26–36.
  8. Büchel, C., & Friston, K. (2000). Assessing interactions among neuronal
  9. systems using functional neuroimaging. Neural Networks: The Official Journal of the International Neural Network Society, 13(8-9), 871–882.
  10. Bunzl, M., Hanson, S. J., & Poldrack, R. A. (2010). An Exchange about Localism. In Foundational Issues in Human Brain Mapping. S. J. Hanson & M. Bunzl (Eds.) (pp. 49–54). The MIT Press. Retrieved from http://mitpress.universitypressscholarship.com/view/10.7551/mitpress/9780262014021.001.0001/upso-9780262014021-chapter-5
  11. Buzsáki, G. (2006). Rhythms of the Brain. Oxford University Press. Retrieved from http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195301069.001.0001/acprof-9780195301069
  12. Cabeza, R., & Moscovitch, M. (2013). Memory Systems, Processing Modes, and Components: Functional Neuroimaging Evidence. Perspectives on Psychological Science : A Journal of the Association for Psychological Science, 8(1), 49–55. http://doi.org/10.1177/1745691612469033
  13. Coltheart, M. (2011). Methods for modular modelling: Additive factors and cognitive neuropsychology. Cognitive Neuropsychology, 28(3-4), 224–240. h p://doi.org/10.1080/02643294.2011.587794
  14. Constable, R. T. (2011). Challenges in fMRI and Its Limitations. In Functional Neuroradiology. S. H. Faro, F. B. Mohamed, M. Law, & J. T. Ulmer (Eds.) (pp. 331–344). Springer US. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4419-0345-7_19
  15. Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nature Reviews. Neuroscience, 2(10), 704–716. http://doi.org/10.1038/35094565
  16. Expert, P., Lambio e, R., Chialvo, D. R., Christensen, K., Jensen, H. J., Sharp, D. J., & Turkheimer, F. (2011). Self-similar correlation function in brain resting-state functional magnetic resonance imaging. Journal of The Royal Society Interface, 8(57), 472–479. http://doi.org/10.1098/rsif.2010.0416
  17. Farah, M. J. (2014). Brain images, babies, and bathwater: critiquing critiques of functional neuroimaging. The Hastings Center Report, Spec No, S19–30. http://doi.org/10.1002/hast.295
  18. Fingelkurts, A. A., & Fingelkurts, A. A. (2004). Making complexity simpler: multivariability and metastability in the brain. The International Journal of Neuroscience, 114(7), 843–862. http://doi.org/10.1080/00207450490450046
  19. Fodor, J. A. (1986). La modularidad de la mente: un ensayo sobre la psicología de las facultades. Madrid: Ediciones Morata.
  20. Freeman, W. J. (2005). A field-theoretic approach to understanding scale-free neocortical dynamics. Biological Cybernetics, 92(6), 350–359. http://doi.org/10.1007/s00422-005-0563-1
  21. Friston, K. J., Rotshtein, P., Geng, J. J., Sterzer, P., & Henson, R. N. (2006). A critique of functional localisers. NeuroImage, 30(4), 1077-1087. http://doi.org/10.1016/j.neuroimage.2005.08.012
  22. Friston, K., & Price, C. (2011). Modules and brain mapping. Cognitive Neuropsychology, 28(3-4), 241–250. http://doi.org/10.1080/02643294.2 011.558835
  23. Haimovici, A., Tagliazucchi, E., Balenzuela, P., & Chialvo, D. R. (2013). Brain Organization into Resting State Networks Emerges at Criticality on a Model of the Human Connectome. Physical Review Le ers, 110(17), 178101. http://doi.org/10.1103/PhysRevLe .110.178101
  24. Hanson, S. J., & Bunzl, M. (Eds.) (2010). Foundational Issues in Human Brain Mapping. MIT Press.
  25. Hardcastle, V. G., & Stewart, C. M. (2002). What Do Brain Data Really Show? Philosophy of Science, 69(3), 572–582.
  26. Haxby, J. V. (2010). Multivariate Pa ern Analysis of fMRI Data: High-Dimensional Spaces for Neural and Cognitive Representations. In Foundational Issues in Human Brain Mapping (pp. 55–68). S. J. Hanson & M. Bunzl (Eds.) The MIT Press. Retrieved from http://mitpress.universitypressscholarship.com/view/10.7551/mitpress/9780262014021.001.0001/upso-9780262014021-chapter-6
  27. Ibáñez, A. (2007). Complexity and cognition: a meta-theoretical analysis of the mind and brain as a topological dynamical system. Nonlinear Dynamics, Psychology, and Life Sciences, 11(1), 51–90.
  28. Klein, C. (2010). Images Are Not the Evidence in Neuroimaging. British Journal for the Philosophy of Science, 61(2), 265–278.
  29. Leopold, D. A., & Wilke, M. (2005). Neuroimaging: Seeing the Trees for the Forest. Current Biology, 15(18), R766–R768. http://doi.org/10.1016/j.cub.2005.08.055
  30. Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statistical Science, 23(4), 439–464.
  31. Lindquist, M. A., & Wager, T. D. (2014). Principles of functional Magnetic Resonance Imaging. In Handbook of Neuroimaging Data Analysis. London: Chapman & Hall. Retrieved from http://wagerlab.colorado.edu/les/papers/fMRIChapter.pdf.
  32. Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel pa ern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–430. http://doi.org/10.1016/j.tics.2006.07.005
  33. Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of Functional MRI Data Analysis. New York: Cambridge University Press.
  34. Racine, E., Bar-Ilan, O., & Illes, J. (2005). fMRI in the public eye. Nature Reviews. Neuroscience, 6(2), 159–164. http://doi.org/10.1038/nrn1609
  35. Rippon, G. (2006). Electroencephalography. Retrieved from http://eprints.aston.ac.uk/24203/
  36. Roskies, A. L. (2007). Are Neuroimages Like Photographs of the Brain? Philosophy of Science, 74(5), 860–872. http://doi.org/10.1086/525627
  37. Saxe, R., Brett, M., & Kanwisher, N. (2006). Divide and conquer: a defense of functional localizers. NeuroImage, 30(4), 1088–1096; discussion 1097–1099. http://doi.org/10.1016/j.neuroimage.2005.12.062
  38. Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences, 10(02), 161-173. http://doi.org/10.1017/S0140525X00047336
  39. Sporns, O. (2011). Networks of the Brain. Cambridge, MA: MIT Press.
  40. Sternberg, S. (2011). Modular processes in mind and brain. Cognitive Neuropsychology, 28(3-4), 156–208. http://doi.org/10.1080/02643294.2011.557231
  41. Stroga , S. H. (1994). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press.
  42. Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2012). Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis. Frontiers in Physiology, 3. http://doi.org/10.3389/fphys.2012.00015
  43. Thompson, E., & Varela, F. J. (2001). Radical embodiment: neural dynamics and consciousness. Trends in Cognitive Sciences, 5(10), 418-425.
  44. Tressoldi, P. E., Sella, F., Coltheart, M., & Umiltà, C. (2012). Using functional neuroimaging to test theories of cognition: a selective survey of studies from 2007 to 2011 as a contribution to the Decade of the Mind Initiative. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 48(9), 1247–1250. http://doi.org/10.1016/j.cortex.2012.05.024
  45. Uttal, W. R. (2003). The New Phrenology: The Limits of Localizing Cognitive Processes in the Brain. MIT Press.
  46. Venturelli, N. (2010). El enfoque dinamicista en las neurociencias cognitivas: Un abordaje histórico a partir del concepto de metaestabilidad. En Epistemología e Historia de la Ciencia, vol. 16. P. García & Massolo, A. (Eds.) (pp. 664-672). Córdoba: Imprenta de la Facultad de Filosofía y Humanidades (UNC).
  47. ____ (2015). Consideraciones epistemológicas alrededor del enfoque dinamicista en las neurociencias cognitivas. Ciências & Cognição, 20(1): 18-28.
  48. Von der Malsburg, C. von von der, Phillips, W. A., & Singer, W. (Eds.) (2010). Dynamic Coordination in the Brain: From Neurons to Mind. Cambridge, Mass.: The MIT Press.
  49. Wright, J. J., & Liley, D. T. J. (1996). Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behavioral and Brain Sciences, 19(02), 285–295. http://doi.org/10.1017/S0140525X00042679
  50. Yarkoni, T. (2009). Big Correlations in Little Studies: Inflated fMRI Correlations Reflect Low Statistical Power—Commentary on Vul et. al. (2009). Perspectives on Psychological Science, 4(3), 294–298. http://doi.org/10.1111/j.1745-6924.2009.01127.x
  51. Yarkoni, T., & Braver, T. S. (2010). Cognitive neuroscience approaches to individual differences in working memory and executive control: conceptual and methodological issues. In Handbook of individual differences in cognition (pp. 87–107). Springer New York. Retrieved from http://link.springer.com/10.1007/978-1-4419-1210-7_6
  52. Yarkoni, T., Poldrack, R. A., Van Essen, D. C., & Wager, T. D. (2010). Cognitive neuroscience 2.0: building a cumulative science of human brain function. Trends in Cognitive Sciences, 14(11), 489–496. http://doi.org/10.1016/j.tics.2010.08.004
  53. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T.D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665–670. http://doi.org/10.1038/nmeth.1635
  54. Yuste, R. (2015). From the neuron doctrine to neural networks. Nature Reviews. Neuroscience, 16(8), 487–497. http://doi.org/10.1038/nrn3962