No 66 (2023): Mayo-agosto
Artículos

Can We Identify the Theorem in Metaphysics 9, 1051a24-27 with Euclid’s Proposition 32? Geometric Deductions for the Discovery of Mathematical Knowledge

Francisco Miguel Ortiz Delgado
Universidad Autónoma Metropolitana-Iztapalapa
##plugins.themes.classic.biography##

Publiée 2023-04-11

Comment citer

Ortiz Delgado, F. M. (2023). Can We Identify the Theorem in Metaphysics 9, 1051a24-27 with Euclid’s Proposition 32? Geometric Deductions for the Discovery of Mathematical Knowledge. Tópicos, Revista De Filosofía, (66), 41–65. https://doi.org/10.21555/top.v660.2155

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Altmetrics

Citas

Résumé

This paper has two specific goals. The first is to demonstrate that the theorem in Metaphysics Θ 9, 1051a24-27 is not equivalent to Euclid’s Proposition 32 of book I (which contradicts some Aristotelian commentators, such as W. D. Ross, J. L. Heiberg, and T. L. Heith). Agreeing with Henry Mendell’s analysis, I argue that the two theorems are not equivalent, but I offer different reasons for such divergence: I propose a pedagogical-philosophical reason for the Aristotelian theorem being shorter than the Euclidean one (and the previous Aristotelian versions). Aristotle wants to emphasize the deductive procedure as a satisfactory method to discover scientific knowledge. The second objective, opposing some consensus about geometrical deductions/theorems in Aristotle, is to briefly propose that the theorem, exactly as we found it in Metaphysics and without any emendation to the text (therefore opposing Henry Mendell’s suggested amendments), allows the ancient philosopher to demonstrate that universal mathematical knowledge is in potence in geometrical figures. This tentatively proves that Aristotle emphasizes that geometrical deduction is sufficient to actualize mathematical knowledge.

Références

  1. Agashe, S. D. (1989). The Axiomatic Method: Its Origin and Purpose. Journal of Indian Council of Philosophical Research, 6(3), 109-118.
  2. Aristotle. (1924). Metaphysics. W. D. Ross (ed.). Clarendon Press. URL: http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.01.0051%3Abook%3D9%3Asection%3D1051a.
  3. Aristotle. ([1933] 1989a). Aristotle in 23 Volumes. Volume 17. H. Tredennick (trans.). Harvard University Press-William Heinemann Ltd. URL: http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.01.0052%3Abook%3D13%3Asection%3D1077b.
  4. Aristotle. ([1933] 1989b). Aristotle in 23 Volumes. Volume 18. H. Tredennick (trans.). Harvard University Press-William Heinemann Ltd. URL: http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.01.0052%3Abook%3D13%3Asection%3D1077b.
  5. Aristotle. (2006). Metaphysics, Book . L. Judson (ed). S. Makin (trans.). Clarendon Press-Oxford University Press.
  6. Barnes, J. (1981). Proof and the Syllogism. In E. Berti (ed.), Aristotle on Science: The “Posterior Analytics”. (pp. 17-59). Editrice Antenore.
  7. Bunge, M. (2001). Prólogo. Euclides dos mil años después. In L. Beppo, Leyendo a Euclides. (pp. 9-14). Libros del Zorzal.
  8. Burnyeat, M. F. (1984). Notes on Books Eta and Theta of Aristotle´s Metaphysics. J. Richardson Publishers-Oxford University Press.
  9. Bechler, Z. (1995). Aristotle´s Theory of Actuality. State University of New York.
  10. Cleary, J. C. (2010). Aristóteles. Acerca de los múltiples sentidos de prioridad. M. D. Boeri (trans.). Ediciones Colihue.
  11. Corcoran, J. (2009). Aristotle´s Demonstrative Logic. History and Philosophy of Logic, 30, 1-20.
  12. Corcoran, J. & Tracy, K. (2018). [Review of the paper “A Completed System for Robin Smith’s Incomplete Ecthetic Syllogistic”, by Pierre Joray ((2017). Notre Dame Journal of Formal Logic, 58(3), 329–342)]. Versión inédita, 1-7. URL: https://www.academia.edu/36231363/CORCORAN_TRACY_ON_ARISTOTLES_ECTHESIS.
  13. Corkum, P. (2012). Aristotle on Mathematical Truth. British Journal for the History of Philosophy, 20(6), 1057-1076.
  14. Euclide. (1883-1888). Euclidis Elementa. J. L. Heiberg (ed.). Teubner.
  15. Euclide. (1956). Euclid's Elements. T. Little Heath (trans). Dover. URL: http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3atext%3a1999.01.0086
  16. Hintikka, J. (1966). Aristotelian Infinity. The Philosophical Review, 75(2), 197-218.
  17. Hoyrup, J. (2002). Existence, Substantiality, and Counterfactuality. Observations on the Status of Mathematics in Aristotle, Euclide, and Others. Centaurus, 44, 1-31.
  18. Lear, J. (1982). Aristotle on Mathematics. The Philosophical Review, 91, 161-192.
  19. Martí Sánchez, M. (2017). La filosofía de las matemáticas de Aristóteles. Tópicos, Revista de Filosofía, 52, 43-66. DOI: https://doi.org/10.21555/top.v0i52.784.
  20. Mendell, H. (1984). Two Geometrical Examples from Aristotle´s Metaphysics. The Classical Quarterly, 34(2), 359-372. URL: https://www.jstor.org/stable/638294.
  21. Mueller, I. (1970). Aristotle on Geometrical Objects. Archive für Geschichte der Philosophie, 52(2), 156-171.
  22. Mueller, I. (1974). Greek Mathematics and Greek Logic. In J. Corcoran (ed.), Ancient Logic and Its Modern Interpretations. (pp. 35-70). D. Reidel Publishing Company.
  23. Ross, W. D. (1924). Aristotle´s Metaphysics. Volume II. Oxford University Press.
  24. Hasper, P. S. & Yurdin, J. (2014). Between Perception and Scientific Knowledge: Aristotleʼs Account of Experience. Oxford Studies in Ancient Philosophy, 47, 119-150.
  25. Sorabji, R. (2003). Necesidad, causa y culpa. R. Salles (trans.). Universidad Nacional Autónoma de México.