Núm. 67 (2023): Septiembre-diciembre
Filosofía en el espacio público

Una articulación filosófica de la epidemiología epigenética

Mariano Martín-Villuendas
Universidad de Salamanca

Publicado 2023-08-01

Cómo citar

Martín-Villuendas, M. (2023). Una articulación filosófica de la epidemiología epigenética. Tópicos, Revista De Filosofía, (67), 411–452. https://doi.org/10.21555/top.v670.2411

Descargas

Los datos de descargas todavía no están disponibles.

Altmetrics

Citas

Resumen

Múltiples estudios experimentales han iluminado el potencial papel que las alteraciones epigenéticas podrían jugar en el inicio y estabilización de las enfermedades. Estas investigaciones han motivado el surgimiento de una nueva disciplina conocida como epidemiología epigenética. Este artículo tiene dos objetivos fundamentales. Primero, analizar y clarificar las principales dificultades epistemológicas, ontológicas y metodológicas que enfrenta la articulación de esta nueva disciplina científica. Segundo, estructurar un marco filosófico alternativo e innovador basado en un pluralismo científico que permita, en último término, integrar la epidemiología epigenética dentro de la actual práctica médica.

Citas

  1. Bach, J. (2019). Causality in Medicine. C. R. Biologies, 342, 55-57.
  2. Barker, D. J. y Osmond, C. (1986). Infant Mortality, Childhood Nutrition, and Ischaemic Heart Disease in England and Wales. Lancet, 1, 1077-1081.
  3. Baumberger, C. (2019). Explicating Objectual Understanding: Taking Degrees Seriously. Journal for General Philosophy of Science, 50, 367-388. DOI: https://doi.org/10.1007/s10838-019-09474-6.
  4. Beatty, J. (1995). The Evolutionary Contingency Thesis. En G. Wolters y J. Lennox (eds.), Concepts, Theories, and Rationality in the Biological Sciences. (pp. 45–81). University of Pittsburgh Press.
  5. Bechtel, W. y Richardson, R. (2010). Discovering Complexity. Decomposition and Localization as Strategies in Scientific Research. The MIT Press.
  6. Bertolaso, M. (2016). Philosophy of Cancer. A Dynamic and Relational View. Springer.
  7. Boogerd, F., Bruggeman, F., Hofmeyr, J. H. y Westerhoff, H. (2007). Towards a Philosophical Foundations of System Biology. En F. Boogerd, F. Bruggeman, J. H. Hofmeyr y H. Westerhoff (eds.), System Biology. Philosophical Foundations. (pp. 3-19). Elsevier.
  8. Brandom, R. (2005). Hacerlo explícito. Razonamiento, representación y compromiso discursivo. Á. Ackermann Pilári y J. Rosselló (trads.). Herder.
  9. Burdge, G., Slater-Jefferies, J., Torrens, C., Phillips, E., Hanson, M. y Lillycrop, K. (2007). Dietary Protein Restriction of Pregnant Rats in the F0 Generation Induces Altered Methylation of Hepatic Gene Promoters in the Adult Male Offspring in the F1 and F2 Generations. British Journal of Nutrition, 97, 435-439. DOI: https://dx.doi.org/10.1017%2FS0007114507352392.
  10. Choi, J. (2010). Systems Biology and Epigenetic Gene Regulation. IET Systems Biology, 4(5), 289-295. DOI: https://doi.org/10.1049/iet-syb.2010.0008.
  11. Choi, S. y Fara, M. (2021). Dispositions. En E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. URL: https://plato.stanford.edu/entries/dispositions/ - DisDis.
  12. Chuang, J., Frentz, Z. y Leibler, S. (2019). Homeorhesis and Ecological Succession Quantified in Synthetic Microbial Ecosystems. PNAS, 116(30), 14852-14861. DOI: https://doi.org/10.1073/pnas.1901055116.
  13. Clarke, B. y Russo, F. (2018). Mechanism and Biomedicine. En S. Glennan y P. Illari (eds.), The Routledge Handbook of Mechanisms and Mechanical Philosophy. (pp. 319-332). Routledge.
  14. Craver, C. (2007). Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience. Clarendon Press.
  15. Crick, F. (1958). On Protein Synthesis. Symposium of the Society of Experimental Biology, 12, 138-163.
  16. Davidson, E. (2017). Systems Biology, Choices Arising. En S. Green (ed.), Philosophy of Systems Biology. (pp. 69-79). Springer.
  17. De Regt, H. (2017). Understanding Scientific Understanding. Oxford University Press.
  18. Dupré, J. (2012). Processes of Life: Essays in the Philosophy of Biology. Oxford University Press. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199691982.001.0001.
  19. Elgin, C. (2017). True Enough. The MIT Press.
  20. Elgin, M. y Sober, E. (2002). Cartwright on Explanation and Idealization. Erkenntnis, 57, 441-450. DOI: https://doi.org/10.1023/A:1021502932490.
  21. Fabris, F. (2018). Waddington’s Processual Epigenetics and the Debate over Cryptic Variability. En D. Nicholson y J. Dupré. (eds.), Everything Flows. Towards a Processual Philosophy of Biology. (pp. 246-263). Oxford University Press.
  22. Fagan, M. (2020). Explanation, Interdisciplinarity and Perspectives. En M. Massimi y C. McCoy (eds.), Understanding Perspectivism. Scientific Challenges and Methodological Prospects. (pp. 28-48). Routledge.
  23. Feinberg, A. (2007). Phenotypic Plasticity and the Epigenetics of Human Disease. Nature, 447, 433-440. DOI: https://doi.org/10.1038/nature05919.
  24. Feinberg, A. (2008). Epigenetics at the Epicenter of Modern Medicine. JAMA, 299, 1345-1350. DOI: https://doi.org/10.1001/jama.299.11.1345.
  25. Feinberg, A. (2018). The Key Role of Epigenetics in Human Disease Prevention and Mitigation. The New England Journal of Medicine, 378(14), 1323-34. DOI: https://doi.org/10.1056/nejmra1402513.
  26. Frigg, R. y Nguyen, J. (2019). Mirrors without Warnings. Synthese. DOI: https://doi.org/10.1007/s11229-019-02222-9.
  27. Gawne, R., McKenna, K. y Nijhout, F. (2018). Unmodern Synthesis: Developmental Hierarchies and the Origin of Phenotypes. BioEssays, 40, 1600265. DOI: https://doi.org/10.1002/bies.201600265.
  28. Giere, R. (2006a). Perspectival Pluralism. En S. Kellert, H. Longino y K. Waters (eds.), Scientific Pluralism. (p. 26-41). University of Minnesota Press.
  29. Giere, R. (2006b). Scientific Perspectivism. The University of Chicago Press.
  30. Gilbert, S. y Epel, D. (2015). Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution. Sinauer.
  31. Gluckman, P. y Hanson, M. (2004). Living With the Past: Evolution, Development, and Patterns of Disease. Science, 305, 1733-1736. DOI: https://doi.org/10.1126/science.1095292.
  32. Gluckman, P., Hanson, M., Spencer, M. y Bateson, P. (2005). Environmental Influences During Development and Their Later Consequences for Health and Disease: Implications for the Interpretation of Empirical Studies. Proceedings of the Royal Society B. Biological Sciences, 272, 671-677. DOI: https://doi.org/10.1098/rspb.2004.3001.
  33. Gluckman, P., Lillycrop, K., Vickers, M., Pleasants, A., Phillips, E., Beedle, A. y Hanson, M. (2007). Metabolic Plasticity During Mammalian Development Is Directionally Dependent on Early Nutritional Status. PNAS, 104, 12796-12800. DOI: https://doi.org/10.1073/pnas.0705667104.
  34. Gluckman, P., Hanson, M., Beedle, A., Buklijas, T. y Low, F. (2011). Epigenetics of Human Disease. En B. Hallgrímsson y B. Hall (eds.), Epigenetics: Linking Genotype and Phenotype in Development and Evolution. (pp. 398-423). University of California Press.
  35. Goldman, A. (1999). Knowledge in a Social World. Oxford University Press.
  36. Green, S. (2017). Philosophy of Systems Biology. Springer.
  37. Grimm, S. (2012). The Value of Understanding. Philosophy Compass, 7(2), 103–117. DOI: https://doi.org/10.1111/j.1747-9991.2011.00460.x.
  38. Gross, F. (2017). Towards a Methodology for Systems Biology. En S. Green (ed.), Philosophy of Systems Biology. (pp. 109-117). Springer.
  39. Guttinger, S. (2018). A Process Ontology for Macromolecular Biology. En D. Nicholson y J. Dupré (eds.), Everything Flows. Towards a Processual Philosophy of Biology. (pp. 303-320). Oxford University Press.
  40. Hall, B. (2011). A Brief History of the Term and Concept Epigenetics. En B. Hallgrímsson y B. Hall (eds.), Epigenetics: Linking Genotype and Phenotype in Development and Evolution. (pp. 9-13). University of California Press.
  41. Hanahan, D. y Weinberg, R. (2011). Hallmarks of Cancer: The Next Generation. Cell, 144(5), 646-674. DOI: https://doi.org/10.1016/j.cell.2011.02.013.
  42. Heijmans, B., Tobi, E., Stein, A., Putter, H., Blauw, G., Susser, E., Slagboom, P. y Lumey, L. (2008). Persistent Epigenetic Differences Associated with Prenatal Exposure to Famine in Humans. PNAS, 105, 17046-17059. DOI: https://doi.org/10.1073/pnas.0806560105.
  43. Hofmeyr, J. (2017). Exploring the Metabolic Marketplace through
  44. the Lens of Systems Biology. En S. Green (ed.), Philosophy of Systems Biology. (pp. 117-125). Springer.
  45. Hohmann, S. (2017). Moving from Genetics to Systems Biology. En S. Green (ed.), Philosophy of Systems Biology. (pp. 125-135). Springer.
  46. Holland, J. (1992). Complex Adaptative Systems. Daedalus, 121 (1), 17-30.
  47. Houseley, J., Hill, C. y Rugg-Gunn, P. (2015). Annual Meeting of the EpiGeneSys Network of Excellence—Advancing Epigenetics towards Systems Biology. BioEssays, 37, 592-595. DOI: https://dx.doi.org/10.1002%2Fbies.201500015.
  48. Jablonka, E. (2004). Epigenetic Epidemiology. International Journal of Epidemiology, 33, 929–935. DOI: https://doi.org/10.1093/ije/dyh231.
  49. Jacob, F. (1998). El ratón, la mosca y el hombre. A. Martínez Riu (trad.). Crítica.
  50. Jacob, F. y Monod, J. (1961). Genetic Regulatory Mechanism in the Synthesis of Proteins. Journal of Molecular Biology, 3(3), 318-356. DOI: https://doi.org/10.1016/S0022-2836(61)80072-7.
  51. Jaeger, J. y Monk, M. (2015). Everything Flows. A Process Perspective on Life. EMBO reports, 16(9), 1064-67. DOI: https://doi.org/10.15252/embr.201541088.
  52. Jeffery, C. (2003). Multifunctional Proteins: Examples of Gene Sharing. Annals of Medicine, 35, 28-35. DOI: https://doi.org/10.1080/07853890310004101.
  53. Jones, M. y Cartwright, N. (2005). Idealization XII: Correcting the Model. Idealization and Abstraction in the Sciences. Rodopi.
  54. Kaiser, M. (2011). The Limits of Reductionism in the Life Sciences. History and Philosophy of the Life Sciences, 33, 453-476.
  55. Kellert, S., Longino, H. y Waters, K. (2006). Introduction: The Pluralist Instance. En S. Kellert, H. Longino y K. Waters (eds.), Scientific Pluralism. (pp. vii-xxix). University of Minnesota Press.
  56. Kelp, C. (2018). Inquiry, Knowledge and Understanding. Synthese. DOI: https://doi.org/10.1007/s11229-018-1803-y.
  57. Khalifa, K. (2017). Understanding, Explanation, and Scientific Knowledge. Cambridge University Press.
  58. Kitano, H. (2004). Biological Robustness. Nature Reviews Genetics, 5, 826-837. DOI: https://doi.org/10.1038/nrg1471.
  59. Kitano, H. (2017). Biological Complexity and the Need for Computational Approaches. En S. Green (ed.), Philosophy of Systems Biology. (pp. 181-193). Springer.
  60. Kolodkin, A. (2017). Systems Biology Through the Concept of Emergence. En S. Green (ed.), Philosophy of Systems Biology. (pp. 181-193). Springer.
  61. Kvanvig, J. (2003). The Value of Knowledge and the Pursuit of Understanding. Cambridge University Press.
  62. Ladyman, J. y Wiesner, K. (2020). What is a Complex System? Yale University Press.
  63. Laplane, L. (2016). Cancer Stem Cells. Philosophy and Therapies. Harvard University Press.
  64. Lillycrop, K., Phillips, E., Jackson, A., Hanson, M. y Burdge, G. (2005). Dietary Protein Restriction of Pregnant Rats Induces and Folic Acid Supplementation Prevents Epigenetic Modification of Hepatic Gene Expression in the Offspring. The Journal of Nutrition, 135, 1382-1386. DOI: https://doi.org/10.1093/jn/135.6.1382.
  65. Lima, S., Pinto, L., y Herceg, Z. (2011). The Effects of Diet on Epigenetic Processes. En T. Tollefsbol (ed.), Handbook of Epigenetics. The New Molecular and Medical Genetics. (pp. 449-458). Elsevier.
  66. Lodish, H., Berk, A., Kaiser, C., Krieger, M., Bretscher, A., Ploegh, H., Amon, A. y Scott, M. (2016). Biología celular y molecular. Editorial Médica Panamericana (trad.). Panamericana.
  67. Longino, H. (2002). The Fate of Knowledge. Princeton University Press.
  68. Luco, R., Allo, M., Schor, I., Kornblihtt, A. y Misteli, T. (2011). Epigenetics in Alternative Pre-mRNA splicing. Cell, 144, 16–26. DOI: https://doi.org/10.1016/j.cell.2010.11.056.
  69. Martín-Villuendas, M. (2021a). ¿Es necesaria la verdad? Una noción pragmática y deflacionaria de comprensión. ArtefaCToS. Revista de Estudios de la Ciencia y la Tecnología, 10(2), 175-201. DOI: https://doi.org/10.14201/art2021102175201.
  70. Martín-Villuendas, M. (2021b). Una reconsideración pluralista del concepto de herencia. Contrastes. Revista Internacional de Filosofía, 26(3), 25-47. DOI: https://doi.org/10.24310/Contrastescontrastes.v26i3.10251.
  71. Mayr, E. (2001). What evolution is. Phoenix.
  72. Mekios, C. (2017). From Biological Research to a Philosophy
  73. of Systems Biology: The Ground Covered and
  74. Some Challenges that Lie Ahead. En S. Green (ed.), Philosophy of Systems Biology. (pp. 193-205). Springer.
  75. Mesarovic, M. (2017). Complexity Organizing Principles: Prerequisites for Life. En S. Green (ed.), Philosophy of Systems Biology. (pp. 205-215.). Springer.
  76. Michels, K. B. (2012). Epigenetic Epidemiology. Springer.
  77. Mitchell, M. (2011). Complexity: A Guided Tour. Oxford University Press.
  78. Mitchell, S. (2003). Biological Complexity and Integrative Pluralism. Cambridge University Press.
  79. Mitchell, S. (2009). Unsimple Truths. Science, Complexity and Policy. The University of Chicago Press.
  80. Mitchell, S. (2020). Perspectives, Representation, and Integration. En M. Massimi y C. McCoy (eds.), Understanding Perspectivism. Scientific Challenges and Methodological Prospects. (pp. 178-193). Routledge.
  81. Nicholson, D. y Dupré, J. (2018). A Manifesto for a Processual Philosophy of Biology. En D. Nicholson y J. Dupré. (eds.), Everything Flows. Towards a Processual Philosophy of Biology. (pp. 3-48). Oxford University Press.
  82. Nicolis, G. y Prigogine, I. (1989). Exploring Complexity. An Introduction. W. H. Freeman.
  83. Nijhout, F. (2003). On the Association Between Genes and Complex Traits. Journal of Investigative Dermatology Symposium Proceedings, 8(2), 162-163. DOI: https://doi.org/10.1046/j.1087-0024.2003.00801.x.
  84. Nijhout, F., Sadre-Marandi, F., Best, J. y Reed, M. (2017). Systems Biology of Phenotype Robustness and Plasticity. Integrative and Comparative Biology, 57(2), 171-184. DOI: https://doi.org/10.1093/icb/icx076.
  85. Nijhout, F., Best, J. y Reed, M. (2019). Systems Biology of Robustness and Homeostatic Mechanisms. WIREs. Systems Biology and Medicine, 11(3), 1-23. DOI: https://doi.org/10.1002/wsbm.1440.
  86. Noble, D. (2006). The Music of Life. Biology beyond Genes. Oxford University Press.
  87. Noble, D. (2017). Dance to the Tune. Biological Relativity. Cambridge University Press.
  88. O’Malley, M. y Dupré, J. (2005). Fundamental Issues in Systems Biology. BioEssays, 27, 1270-1276. DOI: https://doi.org/10.1002/bies.20323.
  89. Odling-Smee, J., Laland, K. y Feldman, M. (2003). Niche Construction: The Neglected Process in Evolution. Princeton University Press.
  90. Oppenheim, P. y Putnam, H. (1958). Unity of Science as a Working Hypothesis. En H. Feigl, M. Scriven y G. Maxwell (eds.), Concepts, Theories, and the Mind-Body Problem. (pp. 3–36). University of Minnesota Press.
  91. Potochnik, A. (2014). Causal patterns and adequate explanations. Philosophical Studies, 172, 1163-1182.
  92. Potochnik, A. (2017). Idealization and the Aims of Science. The University of Chicago Press.
  93. Potochnik, A. y McGill, B. (2012). The Limitations of Hierarchical Organization. Philosophy of Science, 79(1), 120–140. DOI: https://www.cambridge.org/core/journals/philosophy-of-science/article/abs/limitations-of-hierarchical-organization/8128A82639845535868EDB1EA640AB2C.
  94. Pradeu, T. (2018). Genidentity and Biological Processes 96-113. En D. Nicholson y J. Dupré (eds.), Everything Flows. Towards a Processual Philosophy of Biology. (pp. 96-112). Oxford University Press.
  95. Rice, C. (2020). Universality and the Problem of Inconsistent Models. En M. Massimi y C. McCoy (eds.), Understanding Perspectivism. Scientific Challenges and Methodological Prospects. (pp. 85-108). Routledge.
  96. Rice, C. (2021). Leveraging Distortions. Explanation, Idealization and Universality in Science. The MIT Press.
  97. Richards, E. (2006). Inherited Epigenetic Variation—Revisiting Soft Inheritance. Nature Reviews, 7, 395-401. DOI: https://doi.org/10.1038/nrg1834.
  98. Ringrose, L. (2017). Epigenetics and Systems Biology. Academic Press.
  99. Rouse, J. (2015). Articulating the World: Conceptual Understanding and the Scientific Image. The University of Chicago Press.
  100. Sarkar, S. (1998). Genetics and Reductionism. Cambridge University Press.
  101. Sellars, W. (1997). Empiricism and the Philosophy of Mind. University of Minnesota Press.
  102. Shapiro, J. (2011). Evolution. A View from the 21st Century. FT Press Science.
  103. Strevens, M. (2008). Depth: An Account of Scientific Explanation. Harvard University Press.
  104. Suárez, M. (2009). Fictions in Science: Philosophical Essays on Modeling and Idealization. Routledge.
  105. Sultan, S. (2015). Organism & Environment. Ecological Development, Niche Construction and Adaptation. Oxford University Press.
  106. Tollesfbol, T. (2009). Cancer epigenetics. Taylor and Francis.
  107. Trout, J. D. (2007). The Psychology of Scientific Explanation. Philosophy Compass, 2(3), 564-591. DOI: https://doi.org/10.1111/j.1747-9991.2007.00081.x.
  108. Vogt, G. (2017). Facilitation of Environmental Adaptation and Evolution by Epigenetic Phenotype Variation: Insights From Clonal, Invasive, Polyploid, and Domesticated Animals. Environmental epigenetics, 3, 1-17. DOI: https://doi.org/10.1093/eep/dvx002.
  109. Waddington, C. (1942). The Epigenotype. Endeavour, 1, 18–20. DOI: https://doi.org/10.1093/ije/dyr184.
  110. Waddington, C. (1957). The Strategy of Genes. A Discussion of Some Aspects of Theoretical Biology. Routledge.
  111. Walsh, D. (2018). Objectcy and Agency: Towards a Methodological Vitalism. En D. Nicholson y J. Dupré. (eds.), Everything Flows. Towards a Processual Philosophy of Biology. (pp. 167-185). Oxford University Press.
  112. Weisberg, S. (2013). Simulation and Similarity: Using Models to Understand the World. Oxford University
  113. Westerhoff, H., Winder, C., Messiha, H., Simeonidis, E., Adamczyk, M., Verma, M., Bruggeman, F. y Dunn, W. (2009). Systems Biology: The Elements and Principles of Life. FEBS Letters, 583, 3882-3890. DOI: https://doi.org/10.1016/j.febslet.2009.11.018.
  114. Winsberg, E. (2018). Philosophy and Climate Science. Cambridge University Press.
  115. Woodward, J. (2003). Making Things Happen. A Theory of Causal Explanation. Oxford University Press.
  116. Wolkenhauer, O. (2011). Interview with Olaf Wolkenhauer. The Reasoner, 5(9), 139–143. URL: https://research.kent.ac.uk/reasoning/wp-content/uploads/sites/1804/2019/06/TheReasoner-59.pdf.
  117. Wolkenhauer, O. (2014). Pushing Limits by Embracing Complexity. IET. Systems Biology, 8(6), 244-250. DOI: https://doi.org/10.1049/iet-syb.2014.0031.
  118. Wolkenhauer, O. y Green, S. (2013). The Search for Organizing Principles as a Cure Against Reductionism in Systems Medicine. The FEBS Journal, 280, 5938-5948. DOI: https://doi.org/10.1111/febs.12311.