Publiée 2024-12-17
Mots-clés
Comment citer
Castro-Manzano, J.-M. (2024). ¿Es la lógica de Szabolcsi una lógica difusa?. Tópicos, Revista De Filosofía, (71), 345–362. https://doi.org/10.21555/top.v710.2825
(c) Tous droits réservés Tópicos, Revista de Filosofía 2024
Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Altmetrics
Citas
Résumé
In this paper we ask ourselves whether Szabolcsi’s numerical term logic is a fuzzy logic. Our answer is in the affirmative. In order to justify such a claim, we first expound some preliminaries that help us understand why the inclusion of fuzzy quantifiers is a sufficient condition for fuzziness. Then we present Szabolcsi’s logic, which includes said quantifiers.
Références
- Castro-Manzano, J.-M. (2019). An Intermediate Term Functor Logic. Argumentos. Revista de Filosofia, 22, 17-31. DOI: https://doi.org/10.36517/Argumentos.22.2.
- Castro-Manzano, J.-M. (2021). Traditional Logic and Computational Thinking. Philosophies, 6, 12. DOI: https://doi.org/10.3390/philosophies6010012.
- Castro-Manzano, J.-M. (2022). On Mixing Term Logics. In B. Liao, R. Markovich, & Y. N. Wáng (eds.), Logics for New-Generation AI. Second International Workshop. 10-12 June 2021, Zhuhai. (pp. 6-23). College Publications. URL: https://www.collegepublications.co.uk/LNGAI/?00002.
- Correia, M. (2017). La lógica aristotélica y sus perspectivas. Pensamiento, 73(275), 5-19.
- Englebretsen, G. (1996). Something to Reckon with: The Logic of Terms. University of Ottawa Press.
- Dubois, D., Godo, L., de Màntaras, R. L., & Prade, H. (1993). Qualitative Reasoning with Imprecise Probabilities. Journal of Intelligent Information Systems, 2, 319-363. DOI: https://doi.org/10.1007/BF00961659.
- Dubois, D. & Prade, H. (1988). On Fuzzy Syllogisms. Computational Intelligence, 4(2), 171-179.
- Murphree, W. A. (1998). Numerical Term Logic. Notre Dame Journal of Formal Logic, 39, 346-362.
- Pereira-Fariña, M., Vidal, J. C., Díaz-Hermida, F., & Bugarín, A. (2014). A Fuzzy Syllogistic Reasoning Schema for Generalized Quantifiers. Fuzzy Sets and Systems, 234, 79-96.
- Peterson, P. L. (1979). On the Logic of “Few”, “Many”, and “Most”. Notre Dame Journal of Formal Logic, 20, 155-179.
- Simons, P. (2020). Term Logic. Axioms, 9(1), 18. DOI: https://doi.org/10.3390/axioms9010018.
- Sommers, F. (1982). The Logic of Natural Language. Oxford University Press.
- Szabolcsi, L. & Englebretsen, G. (2008). Numerical Term Logic. Edwin Mellen Press.
- Thompson, B. (1982). Syllogisms Using “Few”, “Many”, and “Most.” Notre Dame Journal of Formal Logic, 23, pp. 75-84.
- Thompson, B. (1986). Syllogisms with Statistical Quantifiers.” Notre Dame Journal of Formal Logic, 27, 93-103.
- Wang, P. (1997). Return to Term Logic. In P. Flach and A. Kakas (eds.), Proceedings of the IJCAI’97 Workshop on Abduction and Induction in AI. (pp. 1-9). International Joint Conferences on Artificial Intelligence Organization. URL: https://www.researchgate.net/publication/2257541_Return_to_Term_Logic.
- Zadeh, L. A. (1985). Syllogistic Reasoning in Fuzzy Logic and its Application to Usuality and Reasoning with Dispositions. IEEE Transactions on Systems, Man, and Cybernetics, 15(6), 754-763. DOI: https://doi.org/10.1109/TSMC.1985.6313459.