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Abstract
In this paper we ask ourselves whether Szabolcsi’s numeri-

cal term logic is a fuzzy logic. Our answer is in the affirmative. 
In order to justify such a claim, we first expound some prelimi-
naries that help us understand why the inclusion of fuzzy quan-
tifiers is a sufficient condition for fuzziness. Then we present 
Szabolcsi’s logic, which includes said quantifiers.

Keywords: term logic; numerical logic; fuzzy logic.

Resumen
En este artículo nos preguntamos si la lógica de términos 

numérica de Szabolcsi es una lógica difusa. Nuestra respuesta 
es afirmativa. Para justificar semejante tesis, primero exponemos 
unos preliminares para entender por qué la inclusión de 
cuantificadores difusos es una condición suficiente para 
considerar a una lógica como lógica difusa. Posteriormente 
presentamos la lógica de Szabolcsi, la cual incluye tales 
cuantificadores.

Palabras clave: lógica de términos; lógica numérica; lógica 
difusa.
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1. Introduction1

When it comes to logic, being fuzzy is analogous. On the one hand, 
the main goal of fuzzy logic is to model vague information, typically by 
using imprecise predicates (e.g. “Jan is young,” “Kurt is bald,” “the water 
is cold,” etc.); but on the other, in doing so, it encompasses a variety 
of semantics (e.g. Łukasiewicz semantics, Gödel semantics, t-norm 
semantics, etc.) and tools (e.g. fuzzy set theory, fuzzy arithmetic, fuzzy 
clustering, etc.) that might go beyond the emphasis on predicates. Hence, 
claiming that some logic or some system is fuzzy depends on various, 
analogous reasons, one of these being the inclusion of fuzzy or non-crisp 
quantifiers (e.g. “most,” “many,” “few,” etc.). Granted this proposition, 
in this short contribution we ask ourselves whether Szabolcsi’s logic 
(Szabolcsi & Englebretsen, 2008)—a term logic à la Sommers (1982)—is 
a fuzzy logic. Our answer is in the affirmative, and our argument goes 
as follows:

1. A logic is a fuzzy logic if it includes fuzzy quantifiers.

2. Szabolcsi’s logic includes fuzzy quantifiers.

∴     Szabolcsi’s logic is a fuzzy logic.

In order to support the first premise, I expound some preliminaries 
that help us understand why the inclusion of fuzzy or non-crisp 
quantifiers is, in this analogous context, a sufficient condition for 
fuzzyness (§ 2). Then, in order to unpack the meaning of the second 
premise, I present Szabolcsi’s logic in broad terms (§ 3).

If the previous argument is sound, it would offer a good reason to 
pay more attention to Szabolcsi’s logic, which would be a fuzzy term 
logic. One of a kind.

1  This paper draws on ideas and excerpts from Castro-Manzano (2019, 
2021 & 2022).
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2. Preliminaries
Fuzzy syllogistics is the arrangement of syllogistics (see Appendix 

A) with fuzzy devices, something that can be done in several ways. One 
of these ways consists in extending the set of traditional quantifiers (i.e. 
“all” and “some”) as to include a variety of fuzzy quantifiers, such as 
absolute quantifiers (e.g. “around,” “more than,” etc.), proportional 
quantifiers (e.g. “most,” “almost all,” “few,” etc.), quantifiers of 
exception (e.g. “all but,” , “at most,” etc.), comparative quantifiers (e.g. 
“n more than,” etc. ), proportional comparative quantifiers (e.g. “there 
are double… than…,” etc.), and similarity quantifiers (e.g. “a and b are 
similar”, etc.) (Pereira-Fariña et al., 2014).

Given this general premise, we can pinpoint different proposals that 
have included some subset of said quantifiers. The proposal by Dubois 
& Prade (1988) and Dubois et al. (1993) for example, makes use of fuzzy 
quantifiers with exact boundaries (e.g. “between 30% and 50%”), exact 
values (e.g. “100%”), and imprecise boundaries (e.g. “most”). Zadeh’s 
program defines two types of linguistic quantifiers, absolute (e.g. 
“almost n,” etc.) and proportional (e.g. “ more than half,” etc.), and 
assigns them fuzzy numbers (Zadeh, 1985). Peterson’s project requires 
the extension of intermediate quantifiers such as “most,” “many,” and 
“few” (Peterson, 1979). Thompson’s system is similar to Peterson’s, 
but also includes statistical quantifiers (Thompson, 1982 & 1986). And, 
finally, Murphree’s system tweaks Sommers’ term logic (Sommers, 
1982) in order to model numerical statements (Murphree, 1998).

There are many more systems and proposals, of course—(Pereira-
Fariña et al., 2014) provides an excelent overview—but, in the interest of 
time, that does it for our current purposes. Something we can learn from 
these preliminaries is that the inclusion of fuzzy quantifiers is a sufficient 
condition for granting a logic the status of being fuzzy. Indeed, if these 
systems and proposals can be considered bona fide fuzzy logics, and they 
are regarded as so in virtue of including non-crisp quantifiers, then, 
surely, for any given logic it suffices to include non-crisp quantifiers to 
be regarded as a fuzzy logic.

Our next step consists in showing how Szabolcsi’s logic includes 
this sort of quantifiers.
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3. Szabolcsi’s logic
Szabolcsi’s logic (also known as NTL, for Numerical Term Logic) 

is a conservative extension of Sommers and Englebretsen’s logic 
(see Appendix B) that tries to capture numeracy by representing 
and performing inference with numerical quantifiers (Szabolcsi & 
Englebretsen, 2008). In order to display this logic, we will show its 
syntax and its deductive base.

3.1. Syntax
Since NTL is a conservative extension of TFL, in NTL a basic 

statement has the following form:

±nS±P

where ± is shorthand for the + and − functors, n ∈ R+, and S and P are 
term-schemes. With these components we can represent different 
sorts of fuzzy quantifiers: traditional, generalized, exact, comparative, 
fractional, and subjective.

3.1.1. Traditional quantifiers
Following the previous order, let us begin with the representation of 

traditional quantifiers, which look as follows:

All S is P ≡ At most 0 S are not P ≡ At least all but 0 S are 
P := −0S+P

No S is P ≡ At most 0 S are S ≡ At least all but 0 S are not 
P := −0S−P

Some S is P ≡ More than 0 S are P ≡ Fewer than all but 0 
S are not P := +0S+P

Some S is not P ≡ More than 0 S are not P ≡ Fewer than 
all but 0 S are P := +0S−P
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Notice that besides the canonical form of a statement (the leftmost), 
there are a couple of additional representations. So, for instance, when 
we say, “All logicians are rational,” that is equivalent (≡) to “At most 0 
logicians are not rational” and “At least all but 0 logicians are rational.”

3.1.2. Generalized quantifiers
Something similar happens with the generalization of these 

statements for n > 0, as follows:

At most n S are not P ≡ At least all but n S are P := −nS+P

At most n S are P ≡ At least all but n S are not P := −nS−P

More than n S are P ≡ Fewer than all but n S are not P 
:= +nS+P

More than n S are not P ≡ Fewer than all but n S are P 
:= +nS−P

As with traditional quantifiers, the first expressions are called simple 
representations, whereas the second expressions are known as exceptive 
representations. For example, “At most 5 logicians are rational” is 
equivalent to “At least all but 5 logicians are not rational.”

3.1.3. Exact quantifiers
These last representations are important because they help us depict 

exact quantifiers as follows:

Exactly n S are P := +(+n−1S+P)+(−nS+P)

Exactly n S are not P := +(+n−1S−P)+(+nS+P)

So, for example, to represent the claim that there are exactly two 
logicians that are rational we would write +(+1L+R)+(−2L+R), that is 
to say, more than one logician is rational and at most 2 logicians are 
rational.

3.1.4. Comparative quantifiers
Now, given this account of exact quantifiers, comparative quantifiers 

require some additional tweaks:
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More S than M are P := +((+n−1S+P)+(−nS−P))+((+m−1M+P)+(−mM−P))m>n

Fewer S than M are P := +((+n−1S+P)+(−nS−P))+((+m−1M+P)+(−mM−P))m<n

3.1.5. Fractional quantifiers
Fractional quantifiers can also be formalized as follows:

At most n/m of S are (not) P := −n/mS±P

More than n/m of S are (not) P := +n/mS±P

At least n/m of all S are (not) P := +n/m−1S±P

Fewer than n/m of all S are (not) P := −n/m−1S±P

3.1.6. Subjective quantifiers
And finally, with some other tweaks, we can model subjective 

quantifiers as follows:

Many S are (not) P := +qS±P

Many more than n S are (not) P := +n+qS±P

Many fewer than n S are (not) P := −n+q*S±P

Most S are (not) P := +(−mS±P)+(m<ts/2)

Few S are (not) P := +(−fS±P)+(f<ts/2)

Enough S are (not) P := +e∗S±P

More than enough S are (not) P := +eS±P

Exactly enough S are P := +(+e*S+P)+(−eS−P)

Exactly enough S are not P := +(+e*S−P)+(−eS+P)

Too many S are (not) P := +vS±P
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Almost n S are P := +(+n−a*S+P)+(−n−aS−P)

Almost n S are not P := +(+n−a*S−P)+(−n−aS+P)

Just over n S are P := +(+n+w*S+P)+(−n+wS−P)

Just over n S are not P := +(+n+w*S−P)+(−n+wS+P)

And that does it for representation. What we can gather, then, is 
that NTL does include fuzzy quantifiers from the standpoint of syntax; 
however, that is not a sufficient condition for NTL to be regarded as a 
fuzzy logic, let alone a logic. In order for NTL to be considered as a bona 
fide logic, we need a notion of validity. And Szabolcsi provided it.

3.2. Validity
Again, since NTL is a conservative extension of TFL, we say an 

inference is valid (in NTL) iff:

1. The algebraic sum of the premises is equal to the 
conclusion;

2. the number of particular conclusions (viz., zero or 
one) is equal to the number of particular premises; 
and

3. the sum of the numerical values of the premises are 
equal to or greater that the numerical quantifier of 
the conclusion (this is called quantifier addition, 
QA).

Put like this, inference in NTL seems too simple to be sound or even 
interesting; but that would be a hasty claim. In order to further explain 
the deductive power of this system, we need to deploy some logically 
previous concepts (namely, quantifier transformation, guaranteed 
reference, and term distribution), and some examples.

3.2.1. Quantifier transformation
In NTL, terms represent sets, and so any numerically quantified 

statement makes an assertion with respect to the size of the set. Take for 
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example the statement −10S+P. If we let |S| stand for the cardinality of S, 
the sentence −10S+P is equivalent to +|S|−10*S+P, so that the following hold:

+nS±P ≡ −|S|−n*S±P

+n*S±P ≡ −|S|−nS±P

−nS±P ≡ +|S|−n*S±P

−n*S±P ≡ +|S|−nS±P

The expressions to the left are called numerically simple, while the 
expressions to the right are called numerically exceptive. The process by 
which we convert a numerically simple expression into a numerically 
exceptive expression is called quantifier transformation (QT).

In order to accomplish such a transformation, Szabolcsi proposes 
the next steps: change the quantifier, i.e. substitute the initial + (resp. −) 
for − (resp. +); change the numerical interpretation from simplicity to 
exceptivity (or viceversa); and add 1 to a quantity that is affixed with an 
* (the star, *, represents an exclusive lower limit: for instance, in +n*S+P, 
n*=n−1). So, for example, the following statements are equivalent in 
virtue of quantifier transformation: “All but 15 logicians are democrats” 
(i.e. −15L+D) is the same as “At least |L|−15 logicians are democrats (i.e. 
+|L|−15*L+D).

3.2.2. Guaranteed reference
Given any statement in NTL, the guaranteed reference (or gr-value) 

of such statement with respect to a subset of its terms is the value 
obtained by reducing it to its standard form. For example, say we have 
the statement “At least 3 logicians are not republicans,” namely, +3L−R, 
then its reduction to standard form would be +4*L−R, and hence its gr-
value would be 4 with respect to the set R.

3.2.3. Term distribution
When the domain of a term T has a gr-value |T|−n with respect 

to some subset T, then T is said to be distributed within the domain; 
otherwise, T is undistributed within such domain. In general, a term is 
distributed in a domain if and only if the domain has a gr-value to at 
least all but some excepted number of members of the set that the term 
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represents. For example, in the statement “All logicians are rational,” the 
term “logicians” is distributed whereas the term “rational” is not, for the 
statement −L+R can be reduced to its standard form +|L|−0*L+R, whose 
domain has a gr-value with respect to the subset that results from the 
intersection of L and R, where this value contains a variable representing 
the total number of members of the set it represents, but there is no such 
number for the term R.

With these provisions, quantifier addition (QA) can be reformulated 
as follows: if a term T occurs distributed in a statement, wherein its 
domain D has a gr-value of |T|−n with respect to a subset T, and T 
occurs undistributed in another statement, wherein its domain D’ has 
a gr-value of m with respect to a subset T and m>n, then we can infer 
a new statement that is exactly like the second, except that T has been 
replaced by the first statement minus its distributed T, and wherein 
the domain D’ has a gr-value that is equal to m−n with respect to some 
subset; otherwise, the inference is not valid.

3.3. Examples
Longum iter est per praecepta, so let us show some examples to get 

a sense of the power of NTL. Here are some examples regarding the 
different sorts of quantifiers NTL is able to model (tables 1-8).

Statement NTL
1. All M are P −0M+P P
2. All S are M -0S+M P
∴ All S are P −0S+P QA 1,2

Table 1. A valid NTL inference using traditional quantifiers

Statement NTL
1. All but 7 M are P −7M+P P
2. At least 30 S are M +30S+M P
∴ At least 23 S are P +23S+P QA 1,2

Table 2. A valid NTL inference using generalized quantifiers
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Statement NTL
1. All but 10 M are P −10M+P P
2. All but 5 S are M. -5S+M P
∴ All but 15 S are P -15S+P QA 1,2

Table 3. Another valid NTL inference using generalized quantifiers

Statement NTL
1. At least all but 3 A have more than 18 C −3A+(+H+18C) P
2. At most 8 F are not A -8F+A P
3. Exactly 6 C are not L +(+6*C−L)+(−6C+L) P
∴ At least all but 11 F have more than 12 L +11F+(+H+12L)
4. −11F+(+H+18C) QA 1,2
5. −6C+L Simp 3
6. +11F+(+H+12L) QA 4,5

Table 4. A valid NTL inference using exact quantifiers
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Statement NTL
1. There are more S in P than 
in B |SP|>|SB| P

2. There are fewer P who S 
than P who C |SP|<|CP| P

3. 2 million in B are also S |BS|=|SB|=2000000 P
4. There are 10 million in P |P|=10000000 P
∴ Fewer than 8 million in S is 
also C −8000000*P+C

5. |CP|>|SB| From 1,2
6. |CP|>2000000 From 3
7. +2000000C+P QA 4,5
8. +2000000P+C Com 7
9. +|P|−2000000*P+C QT 8
10. −10000000−2000000*P+C Substitution 4,9
11. −8000000*P+C From 10

Table 5. A valid NTL inference using comparative quantifiers

Statement NTL
1. More than 73% of P are D +|73/100|P+D P
2. Everyone who is D is also S -0D+S P
∴ Fewer than 27% P are not S +|27/100|*P+S
3. +|P-73/100|*P+D QT 1
4. +|27/100|*P+D From 3
5. +|27/100|*P+S QA 2,4

Table 6. A valid NTL inference using fractional quantifiers
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Statement NTL
1. Most P are M −mP+M P
2. All M are S -0M+S P
∴ Most P are S -mP+S QA 1,2

Table 7. A valid NTL inference using subjective quantifiers

Statement NTL
1. Many T are L to all S −qT+(+L-S) P
2. Most A are S -mA+S P
∴ Most A are L to many T -mA+(+L+qT)
3. -mA+(+qT+L) QA 1,2
4. -mA+(+L+qT) Com 3

Table 8. Another valid NTL inference using subjective quantifiers

4. Final remarks
In this short contribution, we asked ourselves whether Szabolcsi’s 

numerical term logic was a fuzzy logic. Our argument rested, broadly, 
on the assumption that the inclusion of fuzzy quantifiers is a sufficient 
condition for fuzzyness, and so we presented Szabolcsi’s logic, which 
includes said quantifiers. The job is done. However, at this point, 
someone might wonder why bother doing such a job, why asking 
whether Szabolcsi’s logic is a fuzzy logic, and the answer is rather 
simple: we asked the previous question because symbols matter, and 
dates are symbolic. About twenty years ago, shortly after finishing his 
work, Lorne Szabolcsi (1974-2002) passed away. Had he still been with 
us, who knows what wonderful directions his logic would have taken, 
specially within the context of revival of term logics (Sommers, 1982; 
Englebretsen, 1996; Wang, 1997; Correia, 2017; Simons, 2020).

This short contribution pays homage to Szabolcsi’s logic. We hope 
this helps attract more attention to his work. It surely deserves it.
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Appendix A
Syllogistics is a term logic that has its origins in Aristotle’s Prior 

Analytics and deals with inference between categorical statements. A 
categorical statement is a statement composed of two terms, a quantity, 
and a quality. The subject and the predicate of a statement are called 
terms: the term-schema S denotes the subject term of the statement 
and the term-schema P denotes the predicate. The quantity may be 
either universal (All) or particular (Some) and the quality may be either 
affirmative (is) or negative (is not). These categorical statements have 
a type denoted by a label—either a (universal affirmative, SaP), e 
(universal negative, SeP), i (particular affirmative, SiP), or o (particular 
negative, SoP)—that allows us to determine a mood, that is, a sequence 
of three categorical statements ordered in such a way that two statements 
are premises (major and minor) and the last one is a conclusion. A 
categorical syllogism, then, is a mood with three terms, one of which 
appears in both premises but not in the conclusion. This particular term, 
usually denoted with the term-schema M, works as a link between the 
remaining terms and is known as the middle term. According to the 
position of this middle term, four figures can be set up in order to encode 
the valid syllogistic moods. For the sake of brevity—but without loss 
of generality—we have omitted the syllogisms that require existential 
import (table A1).

Figure 1 Figure 2 Figure 3 Figure 4
aaa eae iai aee
eae aee aii iai
aii eio oao eio
eio aoo eio

Table A1. Valid syllogistic moods

Appendix B
Term Functor Logic (TFL) is a plus-minus term logic in which a 

categorical statement is a statement of the form ±S±P where ± is shorthand 
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for the + and − functors, and S and P are term-schemes. Given this 
language, TFL offers a basic sense of validity as follows (Englebretsen, 
1996, p. 167): a syllogism is valid iff i) the algebraic sum of the premises 
is equal to the conclusion, and ii) the number of particular conclusions 
(viz., zero or one) is equal to the number of particular premises (this rule 
is also known as the dictum de omni et nullo or DON). And so, with this 
logic, we can model assertoric inferences like the one shown in table A2.

Statement TFL
1. All M are P −M+P P
2. All S are M -S+M P
∴ All S are P -S+P DON 1,2

Table A2. A valid TFL inference

That does it for syllogistic inference, but TFL includes more rules, 
such as:

1. Premise (P): Any premise or tautology can be 
entered as a line in proof. (Tautologies that repeat 
the corresponding conditional of the inference are 
excluded. The corresponding conditional of an 
inference is simply a conditional sentence whose 
antecedent is the conjunction of the premises and 
whose consequent is the conclusion.)

2. Double Negation (DN): Pairs of unary minuses can 
be added or deleted from a formula (i.e. − − X = X).

3. External Negation (EN): An external unary minus 
can be distributed into or out of any phrase: 
−(± X±Y ) = ∓X∓Y.

4. Internal Negation (IN): A negative qualifier can be 
distributed into or out of any predicate-term: ±X−
(±Y) = ±X+(±Y).
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5. Commutation (Com): The binary plus is symmetric 
(i.e. +X+Y = +Y+X).

6. Association (Assoc): The binary plus is associative: 
+X+(+Y+Z) = +(+X+Y)+Z.

7. Contraposition (Contrap): The subject- and 
predicate-terms of a universal affirmation can be 
negated and can exchange places: 
−X+Y = −(−Y)+(−X)).

8. Predicate Distribution (PD): A universal subject can 
be distributed into or out of a conjunctive predicate: 
−X+(+Y+Z) = +(−X+Y)+(−X+Z); and a particular 
subject can be distributed into or out of a disjunctive 
predicate:  +X+(−(−Y)−(−Z )) = − −(+X+Y)− −(+X+Z).

9. Iteration (It): The conjunction of any term with itself 
is equivalent to that term (i.e. +X+X = X).

10. Dictum de omni et nullo (DON): If a term, T, occurs 
universally quantified in a formula and either T 
occurs not universally quantified or its logical 
contrary occurs universally quantified in another 
formula, deduce a new formula that is exactly like 
the latter except that T has been replaced at least 
once by the first formula minus its universally 
quantified T.

11. Simplification (Simp): Either conjunct can be 
deduced from a conjunctive formula. From a 
particularly quantified formula with a conjunctive 
subject-term, deduce either the statement form of 
the subject-term or a new statement just like the 
original but without one of the conjuncts of the 
subject-term; i.e., from +(+X+Y)±Z deduce any of the 
following: +X+Y, +X±Z, or +Y±Z. From a universally 
quantified formula with a conjunctive predicate-
term, deduce a new statement just like the original 
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but without one of the conjuncts of the predicate-
term; i.e., from −X±(+Y+Z) deduce either −X±Y or 
−X±Z.

12. Addition (Add): Any two previous formulae in a 
sequence can be conjoined to yield a new formula, 
and from any pair of previous formulae that are 
both universal affirmations and share a common 
subject-term a new formula can be derived that 
is a universal affirmation, has the subject-term of 
the previous formulae, and has the conjunction of 
the predicate-terms of the previous formulae as its 
predicate-term; i.e., from −X+Y and −X+Z deduce     
−X+(+Y+Z).
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